Xiang Wei
2024
CollabKG: A Learnable Human-Machine-Cooperative Information Extraction Toolkit for (Event) Knowledge Graph Construction
Xiang Wei
|
Yufeng Chen
|
Ning Cheng
|
Xingyu Cui
|
Jinan Xu
|
Wenjuan Han
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
In order to construct or extend entity-centric and event-centric knowledge graphs (KG and EKG), the information extraction (IE) annotation toolkit is essential. However, existing IE toolkits have several non-trivial problems, such as not supporting multi-tasks, and not supporting automatic updates. In this work, we present CollabKG, a learnable human-machine-cooperative IE toolkit for KG and EKG construction. Specifically, for the multi-task issue, CollabKG unifies different IE subtasks, including named entity recognition (NER), entity-relation triple extraction (RE), and event extraction (EE), and supports both KG and EKG. Then, combining advanced prompting-based IE technology, the human-machine-cooperation mechanism with Large Language Models (LLMs) as the assistant machine is presented which can provide a lower cost as well as a higher performance. Lastly, owing to the two-way interaction between the human and machine, CollabKG with learning ability allows self-renewal. Besides, CollabKG has several appealing features (e.g., customization, training-free, and label propagation) that make the system powerful and high-productivity. We holistically compare our toolkit with other existing tools on these features. Human evaluation quantitatively illustrates that CollabKG significantly improves annotation quality, efficiency, and stability simultaneously.
AutoDSL: Automated domain-specific language design for structural representation of procedures with constraints
Yu-Zhe Shi
|
Haofei Hou
|
Zhangqian Bi
|
Fanxu Meng
|
Xiang Wei
|
Lecheng Ruan
|
Qining Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Accurate representation of procedures in restricted scenarios, such as non-standardized scientific experiments, requires precise depiction of constraints. Unfortunately, Domain-specific Language (DSL), as an effective tool to express constraints structurally, often requires case-by-case hand-crafting, necessitating customized, labor-intensive efforts. To overcome this challenge, we introduce the AutoDSL framework to automate DSL-based constraint design across various domains. Utilizing domain specified experimental protocol corpora, AutoDSL optimizes syntactic constraints and abstracts semantic constraints. Quantitative and qualitative analyses of the DSLs designed by AutoDSL across five distinct domains highlight its potential as an auxiliary module for language models, aiming to improve procedural planning and execution.
Search
Co-authors
- Yufeng Chen 1
- Ning Cheng 1
- Xingyu Cui 1
- Jinan Xu 1
- Wenjuan Han 1
- show all...