Xenia Isabel Ohmer


2024

pdf
Context Shapes Emergent Communication about Concepts at Different Levels of Abstraction
Kristina Kobrock | Xenia Isabel Ohmer | Elia Bruni | Nicole Gotzner
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We study the communication of concepts at different levels of abstraction and in different contexts in an agent-based, interactive reference game. While playing the concept-level reference game, the neural network agents develop a communication system from scratch. We use a novel symbolic dataset that disentangles concept type (ranging from specific to generic) and context (ranging from fine to coarse) to study the influence of these factors on the emerging language. We compare two game scenarios: one in which speaker agents have access to context information (context-aware) and one in which the speaker agents do not have access to context information (context-unaware). First, we find that the agents learn higher-level concepts from the object inputs alone. Second, an analysis of the emergent communication system shows that only context-aware agents learn to communicate efficiently by adapting their messages to the context conditions and relying on context for unambiguous reference. Crucially, this behavior is not explicitly incentivized by the game, but efficient communication emerges and is driven by the availability of context alone. The emerging language we observe is reminiscent of evolutionary pressures on human languages and highlights the pivotal role of context in a communication system.

pdf
On the Relationship between Skill Neurons and Robustness in Prompt Tuning
Leon Ackermann | Xenia Isabel Ohmer
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Prompt Tuning is a popular parameter-efficient finetuning method for pre-trained large language models (PLMs). Based on experiments with RoBERTa, it has been suggested that Prompt Tuning activates specific neurons in the transformer’s feed-forward networks, that are highly predictive and selective for the given task. In this paper, we study the robustness of Prompt Tuning in relation to these “skill neurons”, using RoBERTa and T5. We show that prompts tuned for a specific task are transferable to tasks of the same type but are not very robust to adversarial data. While prompts tuned for RoBERTa yield below-chance performance on adversarial data, prompts tuned for T5 are slightly more robust and retain above-chance performance in two out of three cases. At the same time, we replicate the finding that skill neurons exist in RoBERTa and further show that skill neurons also exist in T5. Interestingly, the skill neurons of T5 determined on non-adversarial data are also among the most predictive neurons on the adversarial data, which is not the case for RoBERTa. We conclude that higher adversarial robustness may be related to a model’s ability to consistently activate the relevant skill neurons on adversarial data.