Weiting Tan


2024

pdf
Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles
Weiting Tan | Haoran Xu | Lingfeng Shen | Shuyue Stella Li | Kenton Murray | Philipp Koehn | Benjamin Van Durme | Yunmo Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.

pdf
The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts
Lingfeng Shen | Weiting Tan | Sihao Chen | Yunmo Chen | Jingyu Zhang | Haoran Xu | Boyuan Zheng | Philipp Koehn | Daniel Khashabi
Findings of the Association for Computational Linguistics ACL 2024

As the influence of large language models (LLMs) spans across global communities, their safety challenges in multilingual settings become paramount for alignment research. This paper examines the variations in safety challenges faced by LLMs across different languages and discusses approaches to alleviating such concerns. By comparing how state-of-the-art LLMs respond to the same set of malicious prompts written in higher- vs. lower-resource languages,we observe that (1) LLMs tend to generate unsafe responses much more often when a malicious prompt is written in a lower-resource language, and (2) LLMs tend to generate more irrelevant responses to malicious prompts in lower-resource languages. To understand where the discrepancy can be attributed, we study the effect of instruction tuning with reinforcement learning from human feedback (RLHF) or supervised finetuning (SFT) on the HH-RLHF dataset. Surprisingly, while training with high-resource languages improves model alignment, training in lower-resource languages yields minimal improvement. This suggests that the bottleneck of cross-lingual alignment is rooted in the pretraining stage. Our findings highlight the challenges in cross-lingual LLM safety, and we hope they inform future research in this direction.

pdf
JHU IWSLT 2024 Dialectal and Low-resource System Description
Nathaniel Romney Robinson | Kaiser Sun | Cihan Xiao | Niyati Bafna | Weiting Tan | Haoran Xu | Henry Li Xinyuan | Ankur Kejriwal | Sanjeev Khudanpur | Kenton Murray | Paul McNamee
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Johns Hopkins University (JHU) submitted systems for all eight language pairs in the 2024 Low-Resource Language Track. The main effort of this work revolves around fine-tuning large and publicly available models in three proposed systems: i) end-to-end speech translation (ST) fine-tuning of Seamless4MT v2; ii) ST fine-tuning of Whisper; iii) a cascaded system involving automatic speech recognition with fine-tuned Whisper and machine translation with NLLB. On top of systems above, we conduct a comparative analysis on different training paradigms, such as intra-distillation for NLLB as well as joint training and curriculum learning for SeamlessM4T v2. Our results show that the best-performing approach differs by language pairs, but that i) fine-tuned SeamlessM4T v2 tends to perform best for source languages on which it was pre-trained, ii) multi-task training helps Whisper fine-tuning, iii) cascaded systems with Whisper and NLLB tend to outperform Whisper alone, and iv) intra-distillation helps NLLB fine-tuning.

2023

pdf
Condensing Multilingual Knowledge with Lightweight Language-Specific Modules
Haoran Xu | Weiting Tan | Shuyue Li | Yunmo Chen | Benjamin Van Durme | Philipp Koehn | Kenton Murray
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Incorporating language-specific (LS) modules or Mixture-of-Experts (MoE) are proven methods to boost performance in multilingual model performance, but the scalability of these approaches to hundreds of languages or experts tends to be hard to manage. We present Language-specific Matrix Synthesis (LMS), a novel method that addresses the issue. LMS utilizes parameter-efficient and lightweight modules, reducing the number of parameters while outperforming existing methods, e.g., +1.73 BLEU over Switch Transformer on OPUS-100 multilingual translation. Additionally, we introduce Fuse Distillation (FD) to condense multilingual knowledge from multiple LS modules into a single shared module, improving model inference and storage efficiency. Our approach demonstrates superior scalability and performance compared to state-of-the-art methods.

pdf
Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency
Lingfeng Shen | Weiting Tan | Boyuan Zheng | Daniel Khashabi
Findings of the Association for Computational Linguistics: EMNLP 2023

With growing capabilities of large language models, prompting them has become the dominant way to access them. This has motivated the development of strategies for automatically selecting effective language prompts. In this paper, we introduce **pFlat** (prompt flatness), a new metric to quantify the expected utility of a language prompt. This metric is inspired by *flatness* regularization in statistical learning that quantifies the robustness of the model towards its parameter perturbations. We provide theoretical foundations for this metric and its relationship with other prompt selection metrics, providing a comprehensive understanding of existing methods. Empirically, we show that combining **pFlat** with existing metrics improves both performance and sample efficiency. Our metric outperforms the previous prompt selection metrics with an average increase of 10% in Pearson correlation across 6 classification benchmarks, and the prompt selected by our metric gains 5% higher accuracy than previous metrics across the benchmarks.

pdf
Multilingual Representation Distillation with Contrastive Learning
Weiting Tan | Kevin Heffernan | Holger Schwenk | Philipp Koehn
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Multilingual sentence representations from large models encode semantic information from two or more languages and can be used for different cross-lingual information retrieval and matching tasks. In this paper, we integrate contrastive learning into multilingual representation distillation and use it for quality estimation of parallel sentences (i.e., find semantically similar sentences that can be used as translations of each other). We validate our approach with multilingual similarity search and corpus filtering tasks. Experiments across different low-resource languages show that our method greatly outperforms previous sentence encoders such as LASER, LASER3, and LaBSE.

2022

pdf
Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation
Weiting Tan | Shuoyang Ding | Huda Khayrallah | Philipp Koehn
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Neural Machine Translation (NMT) models are known to suffer from noisy inputs. To make models robust, we generate adversarial augmentation samples that attack the model and preserve the source-side meaning at the same time. To generate such samples, we propose a doubly-trained architecture that pairs two NMT models of opposite translation directions with a joint loss function, which combines the target-side attack and the source-side semantic similarity constraint. The results from our experiments across three different language pairs and two evaluation metrics show that these adversarial samples improve model robustness.