Weiqi Sun
2022
Compositional Task-Oriented Parsing as Abstractive Question Answering
Wenting Zhao
|
Konstantine Arkoudas
|
Weiqi Sun
|
Claire Cardie
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Task-oriented parsing (TOP) aims to convert natural language into machine-readable representations of specific tasks, such as setting an alarm. A popular approach to TOP is to apply seq2seq models to generate linearized parse trees. A more recent line of work argues that pretrained seq2seq2 models are better at generating outputs that are themselves natural language, so they replace linearized parse trees with canonical natural-language paraphrases that can then be easily translated into parse trees, resulting in so-called naturalized parsers. In this work we continue to explore naturalized semantic parsing by presenting a general reduction of TOP to abstractive question answering that overcomes some limitations of canonical paraphrasing. Experimental results show that our QA-based technique outperforms state-of-the-art methods in full-data settings while achieving dramatic improvements in few-shot settings.
Cross-TOP: Zero-Shot Cross-Schema Task-Oriented Parsing
Melanie Rubino
|
Nicolas Guenon des Mesnards
|
Uday Shah
|
Nanjiang Jiang
|
Weiqi Sun
|
Konstantine Arkoudas
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing
Deep learning methods have enabled taskoriented semantic parsing of increasingly complex utterances. However, a single model is still typically trained and deployed for each task separately, requiring labeled training data for each, which makes it challenging to support new tasks, even within a single business vertical (e.g., food-ordering or travel booking). In this paper we describe Cross-TOP (Cross-Schema Task-Oriented Parsing), a zero-shot method for complex semantic parsing in a given vertical. By leveraging the fact that user requests from the same vertical share lexical and semantic similarities, a single cross-schema parser is trained to service an arbitrary number of tasks, seen or unseen, within a vertical. We show that Cross-TOP can achieve high accuracy on a previously unseen task without requiring any additional training data, thereby providing a scalable way to bootstrap semantic parsers for new tasks. As part of this work we release the FoodOrdering dataset, a task-oriented parsing dataset in the food-ordering vertical, with utterances and annotations derived from five schemas, each from a different restaurant menu.
Search