Wei-Lin Chen


2024

pdf
Data Contamination Report from the 2024 CONDA Shared Task
Oscar Sainz | Iker García-Ferrero | Alon Jacovi | Jon Ander Campos | Yanai Elazar | Eneko Agirre | Yoav Goldberg | Wei-Lin Chen | Jenny Chim | Leshem Choshen | Luca D’Amico-Wong | Melissa Dell | Run-Ze Fan | Shahriar Golchin | Yucheng Li | Pengfei Liu | Bhavish Pahwa | Ameya Prabhu | Suryansh Sharma | Emily Silcock | Kateryna Solonko | David Stap | Mihai Surdeanu | Yu-Min Tseng | Vishaal Udandarao | Zengzhi Wang | Ruijie Xu | Jinglin Yang
Proceedings of the 1st Workshop on Data Contamination (CONDA)

The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.

2023

pdf
Fidelity-Enriched Contrastive Search: Reconciling the Faithfulness-Diversity Trade-Off in Text Generation
Wei-Lin Chen | Cheng-Kuang Wu | Hsin-Hsi Chen | Chung-Chi Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this paper, we address the hallucination problem commonly found in natural language generation tasks. Language models often generate fluent and convincing content but can lack consistency with the provided source, resulting in potential inaccuracies. We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive search framework with context-aware regularization terms. FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text. We demonstrate its effectiveness across two tasks prone to hallucination: abstractive summarization and dialogue generation. Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.

pdf
Self-ICL: Zero-Shot In-Context Learning with Self-Generated Demonstrations
Wei-Lin Chen | Cheng-Kuang Wu | Yun-Nung Chen | Hsin-Hsi Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have exhibited striking in-context learning (ICL) ability to adapt to target tasks with a few input-output demonstrations. For better ICL, different methods are proposed to select representative demonstrations from existing training corpora. However, such settings are not aligned with real-world practices, as end-users usually query LMs without access to demonstration pools. In this work, we introduce Self-ICL—a simple framework which bootstraps LMs’ intrinsic capabilities to perform zero-shot ICL. Given a test input, Self-ICL first prompts the model to generate pseudo-inputs. Next, the model predicts pseudo-labels for the pseudo-inputs via zero-shot prompting. Finally, we perform ICL for the test input with the pseudo-input-label pairs as demonstrations. Evaluation on 23 BIG-Bench Hard tasks shows Self-ICL outperforms zero-shot baselines on both average accuracy and head-to-head comparison. Moreover, with zero-shot chain-of-thought, Self-ICL achieves results comparable to using real demonstrations. Additionally, we conduct a range of analyses to validate Self-ICL’s effectiveness and provide insights for its behaviors under different settings.

pdf
ZARA: Improving Few-Shot Self-Rationalization for Small Language Models
Wei-Lin Chen | An-Zi Yen | Cheng-Kuang Wu | Hen-Hsen Huang | Hsin-Hsi Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA’s ability to automatically identify plausible and accurate rationale-answer pairs.

2022

pdf
Learning to Generate Explanation from e-Hospital Services for Medical Suggestion
Wei-Lin Chen | An-Zi Yen | Hen-Hsen Huang | Hsin-Hsi Chen
Proceedings of the 29th International Conference on Computational Linguistics

Explaining the reasoning of neural models has attracted attention in recent years. Providing highly-accessible and comprehensible explanations in natural language is useful for humans to understand model’s prediction results. In this work, we present a pilot study to investigate explanation generation with a narrative and causal structure for the scenario of health consulting. Our model generates a medical suggestion regarding the patient’s concern and provides an explanation as the outline of the reasoning. To align the generated explanation with the suggestion, we propose a novel discourse-aware mechanism with multi-task learning. Experimental results show that our model achieves promising performances in both quantitative and human evaluation.