Is it possible accurately classify political relations within evolving event ontologies without extensive annotations? This study investigates zero-shot learning methods that use expert knowledge from existing annotation codebook, and evaluates the performance of advanced ChatGPT (GPT-3.5/4) and a natural language inference (NLI)-based model called ZSP. ChatGPT uses codebook’s labeled summaries as prompts, whereas ZSP breaks down the classification task into context, event mode, and class disambiguation to refine task-specific hypotheses. This decomposition enhances interpretability, efficiency, and adaptability to schema changes. The experiments reveal ChatGPT’s strengths and limitations, and crucially show ZSP’s outperformance of dictionary-based methods and its competitive edge over some supervised models. These findings affirm the value of ZSP for validating event records and advancing ontology development. Our study underscores the efficacy of leveraging transfer learning and existing domain expertise to enhance research efficiency and scalability.
This study investigates the use of Natural Language Processing (NLP) methods to analyze politics, conflicts and violence in the Middle East using domain-specific pre-trained language models. We introduce Arabic text and present ConfliBERT-Arabic, a pre-trained language models that can efficiently analyze political, conflict and violence-related texts. Our technique hones a pre-trained model using a corpus of Arabic texts about regional politics and conflicts. Performance of our models is compared to baseline BERT models. Our findings show that the performance of NLP models for Middle Eastern politics and conflict analysis are enhanced by the use of domain-specific pre-trained local language models. This study offers political and conflict analysts, including policymakers, scholars, and practitioners new approaches and tools for deciphering the intricate dynamics of local politics and conflicts directly in Arabic.
Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict.