Tyrus Cukuvac


2018

pdf
Predictive Embeddings for Hate Speech Detection on Twitter
Rohan Kshirsagar | Tyrus Cukuvac | Kathy McKeown | Susan McGregor
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)

We present a neural-network based approach to classifying online hate speech in general, as well as racist and sexist speech in particular. Using pre-trained word embeddings and max/mean pooling from simple, fully-connected transformations of these embeddings, we are able to predict the occurrence of hate speech on three commonly used publicly available datasets. Our models match or outperform state of the art F1 performance on all three datasets using significantly fewer parameters and minimal feature preprocessing compared to previous methods.