Suhan Prabhu


2020

pdf bib
Hindi TimeBank: An ISO-TimeML Annotated Reference Corpus
Pranav Goel | Suhan Prabhu | Alok Debnath | Priyank Modi | Manish Shrivastava
Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation

ISO-TimeML is an international standard for multilingual event annotation, detection, categorization and linking. In this paper, we present the Hindi TimeBank, an ISO-TimeML annotated reference corpus for the detection and classification of events, states and time expressions, and the links between them. Based on contemporary developments in Hindi event recognition, we propose language independent and language-specific deviations from the ISO-TimeML guidelines, but preserve the schema. These deviations include the inclusion of annotator confidence, and an independent mechanism of identifying and annotating states such as copulars and existentials) With this paper, we present an open-source corpus, the Hindi TimeBank. The Hindi TimeBank is a 1,000 article dataset, with over 25,000 events, 3,500 states and 2,000 time expressions. We analyze the dataset in detail and provide a class-wise distribution of events, states and time expressions. Our guidelines and dataset are backed by high average inter-annotator agreement scores.

pdf
Detection and Annotation of Events in Kannada
Suhan Prabhu | Ujwal Narayan | Alok Debnath | Sumukh S | Manish Shrivastava
Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation

In this paper, we provide the basic guidelines towards the detection and linguistic analysis of events in Kannada. Kannada is a morphologically rich, resource poor Dravidian language spoken in southern India. As most information retrieval and extraction tasks are resource intensive, very little work has been done on Kannada NLP, with almost no efforts in discourse analysis and dataset creation for representing events or other semantic annotations in the text. In this paper, we linguistically analyze what constitutes an event in this language, the challenges faced with discourse level annotation and representation due to the rich derivational morphology of the language that allows free word order, numerous multi-word expressions, adverbial participle constructions and constraints on subject-verb relations. Therefore, this paper is one of the first attempts at a large scale discourse level annotation for Kannada, which can be used for semantic annotation and corpus development for other tasks in the language.

2019

pdf
Incorporating Sub-Word Level Information in Language Invariant Neural Event Detection
Suhan Prabhu | Pranav Goel | Alok Debnath | Manish Shrivastava
Proceedings of the 16th International Conference on Natural Language Processing

Detection of TimeML events in text have traditionally been done on corpora such as TimeBanks. However, deep learning methods have not been applied to these corpora, because these datasets seldom contain more than 10,000 event mentions. Traditional architectures revolve around highly feature engineered, language specific statistical models. In this paper, we present a Language Invariant Neural Event Detection (ALINED) architecture. ALINED uses an aggregation of both sub-word level features as well as lexical and structural information. This is achieved by combining convolution over character embeddings, with recurrent layers over contextual word embeddings. We find that our model extracts relevant features for event span identification without relying on language specific features. We compare the performance of our language invariant model to the current state-of-the-art in English, Spanish, Italian and French. We outperform the F1-score of the state of the art in English by 1.65 points. We achieve F1-scores of 84.96, 80.87 and 74.81 on Spanish, Italian and French respectively which is comparable to the current states of the art for these languages. We also introduce the automatic annotation of events in Hindi, a low resource language, with an F1-Score of 77.13.

pdf
Event Centric Entity Linking for Hindi News Articles: A Knowledge Graph Based Approach
Pranav Goel | Suhan Prabhu | Alok Debnath | Manish Shrivastava
Proceedings of the 16th International Conference on Natural Language Processing

We describe the development of a knowledge graph from an event annotated corpus by presenting a pipeline that identifies and extracts the relations between entities and events from Hindi news articles. Due to the semantic implications of argument identification for events in Hindi, we use a combined syntactic argument and semantic role identification methodology. To the best of our knowledge, no other architecture exists for this purpose. The extracted combined role information is incorporated in a knowledge graph that can be queried via subgraph extraction for basic questions. The architectures presented in this paper can be used for participant extraction and event-entity linking in most Indo-Aryan languages, due to similar syntactic and semantic properties of event arguments.