Sergio-Luis Ojeda-Trueba

Also published as: Sergio-luis Ojeda-trueba


2024

pdf
Evaluating the Development of Linguistic Metaphor Annotation in Mexican Spanish Popular Science Tweets
Alec Montero | Gemma Bel-Enguix | Sergio-Luis Ojeda-Trueba | Marisela Colín Rodea
Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024)

Following previous work on metaphor annotation and automatic metaphor processing, this study presents the evaluation of an initial phase in the novel area of linguistic metaphor detection in Mexican Spanish popular science tweets. Specifically, we examine the challenges posed by the annotation process stemming from disagreement among annotators. During this phase of our work, we conducted the annotation of a corpus comprising 3733 Mexican Spanish popular science tweets. This corpus was divided into two halves and each half was then assigned to two different pairs of native Mexican Spanish-speaking annotators. Despite rigorous methodology and continuous training, inter-annotator agreement as measured by Cohen’s kappa was found to be low, slightly above chance levels, although the concordance percentage exceeded 60%. By elucidating the inherent complexity of metaphor annotation tasks, our evaluation emphasizes the implications of these findings and offers insights for future research in this field, with the aim of creating a robust dataset for machine learning.

2023

pdf
HOMO-MEX: A Mexican Spanish Annotated Corpus for LGBT+phobia Detection on Twitter
Juan Vásquez | Scott Andersen | Gemma Bel-enguix | Helena Gómez-adorno | Sergio-luis Ojeda-trueba
The 7th Workshop on Online Abuse and Harms (WOAH)

In the past few years, the NLP community has actively worked on detecting LGBT+Phobia in online spaces, using textual data publicly available Most of these are for the English language and its variants since it is the most studied language by the NLP community. Nevertheless, efforts towards creating corpora in other languages are active worldwide. Despite this, the Spanish language is an understudied language regarding digital LGBT+Phobia. The only corpus we found in the literature was for the Peninsular Spanish dialects, which use LGBT+phobic terms different than those in the Mexican dialect. For this reason, we present Homo-MEX, a novel corpus for detecting LGBT+Phobia in Mexican Spanish. In this paper, we describe our data-gathering and annotation process. Also, we present a classification benchmark using various traditional machine learning algorithms and two pre-trained deep learning models to showcase our corpus classification potential.

2022

pdf
HeteroCorpus: A Corpus for Heteronormative Language Detection
Juan Vásquez | Gemma Bel-Enguix | Scott Thomas Andersen | Sergio-Luis Ojeda-Trueba
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

In recent years, plenty of work has been done by the NLP community regarding gender bias detection and mitigation in language systems. Yet, to our knowledge, no one has focused on the difficult task of heteronormative language detection and mitigation. We consider this an urgent issue, since language technologies are growing increasingly present in the world and, as it has been proven by various studies, NLP systems with biases can create real-life adverse consequences for women, gender minorities and racial minorities and queer people. For these reasons, we propose and evaluate HeteroCorpus; a corpus created specifically for studying heterononormative language in English. Additionally, we propose a baseline set of classification experiments on our corpus, in order to show the performance of our corpus in classification tasks.