Domain adaptation is crucial in the clinical domain since the performance of a model trained on one domain (source) degrades seriously when applied to another domain (target). However, conventional domain adaptation methods often cannot be applied due to data sharing restrictions on source data. Source-Free Domain Adaptation (SFDA) addresses this issue by only utilizing a source model and unlabeled target data to adapt to the target domain. In SFDA, self-training is the most widely applied method involving retraining models with target data using predictions from the source model as pseudo-labels. Nevertheless, this approach is prone to contain substantial numbers of errors in pseudo-labeling and might limit model performance in the target domain. In this paper, we propose a Source-Free Prototype-based Self-training (SFPS) aiming to improve the performance of self-training. SFPS generates prototypes without accessing source data and utilizes them for prototypical learning, namely prototype-based pseudo-labeling and contrastive learning. Also, we compare entropy-based, centroid-based, and class-weights-based prototype generation methods to identify the most effective formulation of the proposed method. Experimental results across various datasets demonstrate the effectiveness of the proposed method, consistently outperforming vanilla self-training. The comparison of various prototype-generation methods identifies the most reliable generation method that improves the source model persistently. Additionally, our analysis illustrates SFPS can successfully alleviate errors in pseudo-labeling.
Temporal relation annotation in the clinical domain is crucial yet challenging due to its workload and the medical expertise required. In this paper, we propose a novel annotation method that integrates event start-points ordering and question-answering (QA) as the annotation format. By focusing only on two points on a timeline, start-points ordering reduces ambiguity and simplifies the relation set to be considered during annotation. QA as annotation recasts temporal relation annotation into a reading comprehension task, allowing annotators to use natural language instead of the formalisms commonly adopted in temporal relation annotation. Based on our method, most of the relations in a document are inferable from a significantly smaller number of explicitly annotated relations, showing the efficiency of our proposed method. Using these inferred relations, we develop a temporal relation classification model that achieves a 0.72 F1 score. Also, by decomposing the annotation process into QA generation and QA validation, our method enables collaboration among medical experts and non-experts. We obtained high inter-annotator agreement (IAA) scores, which indicate the positive prospect of such collaboration in the annotation process. Our annotated corpus, annotation tool, and trained model are publicly available: https://github.com/seiji-shimizu/qa-start-ordering.
In medical and social media domains, annotated corpora are often hard to distribute due to copyrights and privacy issues. To overcome this situation, we propose a new method to generate a surrogate corpus for a downstream task by using a text generation model. We chose a medical multi-label classification task, MedWeb, in which patient-generated short messages express multiple symptoms. We first fine-tuned text generation models with different prompting designs on the original corpus to obtain synthetic versions of that corpus. To assess the viability of the generated corpora for the downstream task, we compared the performance of multi-label classification models trained either on the original or the surrogate corpora. The results and the error analysis showed the difficulty of generating surrogate corpus in multi-label settings, suggesting text generation under complex conditions is not trivial. On the other hand, our experiment demonstrates that the generated corpus with a sentinel-based prompting is comparatively viable in a single-label (multiclass) classification setting.