Satya Gundabathula


2024

pdf
PromptMind Team at EHRSQL-2024: Improving Reliability of SQL Generation using Ensemble LLMs
Satya Gundabathula | Sriram Kolar
Proceedings of the 6th Clinical Natural Language Processing Workshop

This paper presents our approach to the EHRSQL-2024 shared task, which aims to develop a reliable Text-to-SQL system for electronic health records. We propose two approaches that leverage large language models (LLMs) for prompting and fine-tuning to generate EHRSQL queries. In both techniques, we concentrate on bridging the gap between the real-world knowledge on which LLMs are trained and the domain-specific knowledge required for the task. The paper provides the results of each approach individually, demonstrating that they achieve high execution accuracy. Additionally, we show that an ensemble approach further enhances generation reliability by reducing errors. This approach secured us 2nd place in the shared task competition. The methodologies outlined in this paper are designed to be transferable to domain-specific Text-to-SQL problems that emphasize both accuracy and reliability.

pdf
PromptMind Team at MEDIQA-CORR 2024: Improving Clinical Text Correction with Error Categorization and LLM Ensembles
Satya Gundabathula | Sriram Kolar
Proceedings of the 6th Clinical Natural Language Processing Workshop

This paper describes our approach to the MEDIQA-CORR shared task, which involves error detection and correction in clinical notes curated by medical professionals. This task involves handling three subtasks: detecting the presence of errors, identifying the specific sentence containing the error, and correcting it. Through our work, we aim to assess the capabilities of Large Language Models (LLMs) trained on a vast corpora of internet data that contain both factual and unreliable information. We propose to comprehensively address all subtasks together, and suggest employing a unique prompt-based in-context learning strategy. We will evaluate its efficacy in this specialized task demanding a combination of general reasoning and medical knowledge. In medical systems where prediction errors can have grave consequences, we propose leveraging self-consistency and ensemble methods to enhance error correction and error detection performance.