Ruiyang Ren


2024

pdf
The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models
Junyi Li | Jie Chen | Ruiyang Ren | Xiaoxue Cheng | Xin Zhao | Jian-Yun Nie | Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.

2023

pdf
A Thorough Examination on Zero-shot Dense Retrieval
Ruiyang Ren | Yingqi Qu | Jing Liu | Xin Zhao | Qifei Wu | Yuchen Ding | Hua Wu | Haifeng Wang | Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent years have witnessed the significant advance in dense retrieval (DR) based on powerful pre-trained language models (PLM). DR models have achieved excellent performance in several benchmark datasets, while they are shown to be not as competitive as traditional sparse retrieval models (e.g., BM25) in a zero-shot retrieval setting. However, in the related literature, there still lacks a detailed and comprehensive study on zero-shot retrieval. In this paper, we present the first thorough examination of the zero-shot capability of DR models. We aim to identify the key factors and analyze how they affect zero-shot retrieval performance. In particular, we discuss the effect of several key factors related to source training set, analyze the potential bias from the target dataset, and review and compare existing zero-shot DR models. Our findings provide important evidence to better understand and develop zero-shot DR models.

pdf
TOME: A Two-stage Approach for Model-based Retrieval
Ruiyang Ren | Wayne Xin Zhao | Jing Liu | Hua Wu | Ji-Rong Wen | Haifeng Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, model-based retrieval has emerged as a new paradigm in text retrieval that discards the index in the traditional retrieval model and instead memorizes the candidate corpora using model parameters. This design employs a sequence-to-sequence paradigm to generate document identifiers, which enables the complete capture of the relevance between queries and documents and simplifies the classic index-retrieval-rerank pipeline. Despite its attractive qualities, there remain several major challenges in model-based retrieval, including the discrepancy between pre-training and fine-tuning, and the discrepancy between training and inference. To deal with the above challenges, we propose a novel two-stage model-based retrieval approach called TOME, which makes two major technical contributions, including the utilization of tokenized URLs as identifiers and the design of a two-stage generation architecture. We also propose a number of training strategies to deal with the training difficulty as the corpus size increases. Extensive experiments and analysis on MS MARCO and Natural Questions demonstrate the effectiveness of our proposed approach, and we investigate the scaling laws of TOME by examining various influencing factors.

2021

pdf
PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval
Ruiyang Ren | Shangwen Lv | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering
Yingqi Qu | Yuchen Ding | Jing Liu | Kai Liu | Ruiyang Ren | Wayne Xin Zhao | Daxiang Dong | Hua Wu | Haifeng Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.

pdf
RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
Ruiyang Ren | Yingqi Qu | Jing Liu | Wayne Xin Zhao | QiaoQiao She | Hua Wu | Haifeng Wang | Ji-Rong Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage reranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other’s relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.