Roney Santos


2024

pdf
Puntuguese: A Corpus of Puns in Portuguese with Micro-edits
Marcio Lima Inacio | Gabriela Wick-Pedro | Renata Ramisch | Luís Espírito Santo | Xiomara S. Q. Chacon | Roney Santos | Rogério Sousa | Rafael Anchiêta | Hugo Goncalo Oliveira
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Humor is an intricate part of verbal communication and dealing with this kind of phenomenon is essential to building systems that can process language at large with all of its complexities. In this paper, we introduce Puntuguese, a new corpus of punning humor in Portuguese, motivated by previous works showing that currently available corpora for this language are still unfit for Machine Learning due to data leakage. Puntuguese comprises 4,903 manually-gathered punning one-liners in Brazilian and European Portuguese. To create negative examples that differ exclusively in terms of funniness, we carried out a micro-editing process, in which all jokes were edited by fluent Portuguese speakers to make the texts unfunny. Finally, we did some experiments on Humor Recognition, showing that Puntuguese is considerably more difficult than the previous corpus, achieving an F1-Score of 68.9%. With this new dataset, we hope to enable research not only in NLP but also in other fields that are interested in studying humor; thus, the data is publicly available.

2020

pdf
Measuring the Impact of Readability Features in Fake News Detection
Roney Santos | Gabriela Pedro | Sidney Leal | Oto Vale | Thiago Pardo | Kalina Bontcheva | Carolina Scarton
Proceedings of the Twelfth Language Resources and Evaluation Conference

The proliferation of fake news is a current issue that influences a number of important areas of society, such as politics, economy and health. In the Natural Language Processing area, recent initiatives tried to detect fake news in different ways, ranging from language-based approaches to content-based verification. In such approaches, the choice of the features for the classification of fake and true news is one of the most important parts of the process. This paper presents a study on the impact of readability features to detect fake news for the Brazilian Portuguese language. The results show that such features are relevant to the task (achieving, alone, up to 92% classification accuracy) and may improve previous classification results.