Robert Kwiatkowski


2024

pdf
Token Alignment via Character Matching for Subword Completion
Ben Athiwaratkun | Shiqi Wang | Mingyue Shang | Yuchen Tian | Zijian Wang | Sujan Kumar Gonugondla | Sanjay Krishna Gouda | Robert Kwiatkowski | Ramesh Nallapati | Parminder Bhatia | Bing Xiang
Findings of the Association for Computational Linguistics ACL 2024

Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model’s generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text.

2016

pdf
Automatically Processing Tweets from Gang-Involved Youth: Towards Detecting Loss and Aggression
Terra Blevins | Robert Kwiatkowski | Jamie MacBeth | Kathleen McKeown | Desmond Patton | Owen Rambow
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Violence is a serious problems for cities like Chicago and has been exacerbated by the use of social media by gang-involved youths for taunting rival gangs. We present a corpus of tweets from a young and powerful female gang member and her communicators, which we have annotated with discourse intention, using a deep read to understand how and what triggered conversations to escalate into aggression. We use this corpus to develop a part-of-speech tagger and phrase table for the variant of English that is used and a classifier for identifying tweets that express grieving and aggression.