This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model.
The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation. Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the limitations of neural models when confronting such challenges.
Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion’s share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs.
We tackle the task of automatically discriminating between human and machine translations. As opposed to most previous work, we perform experiments in a multilingual setting, considering multiple languages and multilingual pretrained language models. We show that a classifier trained on parallel data with a single source language (in our case German–English) can still perform well on English translations that come from different source languages, even when the machine translations were produced by other systems than the one it was trained on. Additionally, we demonstrate that incorporating the source text in the input of a multilingual classifier improves (i) its accuracy and (ii) its robustness on cross-system evaluation, compared to a monolingual classifier. Furthermore, we find that using training data from multiple source languages (German, Russian and Chinese) tends to improve the accuracy of both monolingual and multilingual classifiers. Finally, we show that bilingual classifiers and classifiers trained on multiple source languages benefit from being trained on longer text sequences, rather than on sentences.
We present the most relevant results of the project MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages in its second year. To date, parallel and monolingual corpora have been produced for seven low-resourced European languages by crawling large amounts of textual data from selected top-level domains of the Internet; both human and automatic evaluation show its usefulness. In addition, several large language models pretrained on MaCoCu data have been published, as well as the code used to collect and curate the data.
Even though many recent semantic parsers are based on deep learning methods, we should not forget that rule-based alternatives might offer advantages over neural approaches with respect to transparency, portability, and explainability. Taking advantage of existing off-the-shelf Universal Dependency parsers, we present a method that maps a syntactic dependency tree to a formal meaning representation based on Discourse Representation Theory. Rather than using lambda calculus to manage variable bindings, our approach is novel in that it consists of using a series of graph transformations. The resulting UD semantic parser shows good performance for English, German, Italian and Dutch, with F-scores over 75%, outperforming a neural semantic parser for the lower-resourced languages. Unlike neural semantic parsers, our UD semantic parser does not hallucinate output, is relatively easy to port to other languages, and is completely transparent.
We address the task of automatically distinguishing between human-translated (HT) and machine translated (MT) texts. Following recent work, we fine-tune pre-trained language models (LMs) to perform this task. Our work differs in that we use state-of-the-art pre-trained LMs, as well as the test sets of the WMT news shared tasks as training data, to ensure the sentences were not seen during training of the MT system itself. Moreover, we analyse performance for a number of different experimental setups, such as adding translationese data, going beyond the sentence-level and normalizing punctuation. We show that (i) choosing a state-of-the-art LM can make quite a difference: our best baseline system (DeBERTa) outperforms both BERT and RoBERTa by over 3% accuracy, (ii) adding translationese data is only beneficial if there is not much data available, (iii) considerable improvements can be obtained by classifying at the document-level and (iv) normalizing punctuation and thus avoiding (some) shortcuts has no impact on model performance.
We introduce the project “MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages”, funded by the Connecting Europe Facility, which is aimed at building monolingual and parallel corpora for under-resourced European languages. The approach followed consists of crawling large amounts of textual data from carefully selected top-level domains of the Internet, and then applying a curation and enrichment pipeline. In addition to corpora, the project will release successive versions of the free/open-source web crawling and curation software used.
An important goal of the MaCoCu project is to improve EU-specific NLP systems that concern their Digital Service Infrastructures (DSIs). In this paper we aim at boosting the creation of such domain-specific NLP systems. To do so, we explore the feasibility of building an automatic classifier that allows to identify which segments in a generic (potentially parallel) corpus are relevant for a particular DSI. We create an evaluation data set by crawling DSI-specific web domains and then compare different strategies to build our DSI classifier for text in three languages: English, Spanish and Dutch. We use pre-trained (multilingual) language models to perform the classification, with zero-shot classification for Spanish and Dutch. The results are promising, as we are able to classify DSIs with between 70 and 80% accuracy, even without in-language training data. A manual annotation of the data revealed that we can also find DSI-specific data on crawled texts from general web domains with reasonable accuracy. We publicly release all data, predictions and code, as to allow future investigations in whether exploiting this DSI-specific data actually leads to improved performance on particular applications, such as machine translation.
We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input representation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator’s systematicity and generalization to unseen inputs.
Neural semantic parsers have obtained acceptable results in the context of parsing DRSs (Discourse Representation Structures). In particular models with character sequences as input showed remarkable performance for English. But how does this approach perform on languages with a different writing system, like Chinese, a language with a large vocabulary of characters? Does rule-based tokenisation of the input help, and which granularity is preferred: characters, or words? The results are promising. Even with DRSs based on English, good results for Chinese are obtained. Tokenisation offers a small advantage for English, but not for Chinese. Overall, characters are preferred as input, both for English and Chinese.
Analogies such as man is to king as woman is to X are often used to illustrate the amazing power of word embeddings. Concurrently, they have also been used to expose how strongly human biases are encoded in vector spaces trained on natural language, with examples like man is to computer programmer as woman is to homemaker. Recent work has shown that analogies are in fact not an accurate diagnostic for bias, but this does not mean that they are not used anymore, or that their legacy is fading. Instead of focusing on the intrinsic problems of the analogy task as a bias detection tool, we discuss a series of issues involving implementation as well as subjective choices that might have yielded a distorted picture of bias in word embeddings. We stand by the truth that human biases are present in word embeddings, and, of course, the need to address them. But analogies are not an accurate tool to do so, and the way they have been most often used has exacerbated some possibly non-existing biases and perhaps hidden others. Because they are still widely popular, and some of them have become classics within and outside the NLP community, we deem it important to provide a series of clarifications that should put well-known, and potentially new analogies, into the right perspective.
We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.
Recently, sequence-to-sequence models have achieved impressive performance on a number of semantic parsing tasks. However, they often do not exploit available linguistic resources, while these, when employed correctly, are likely to increase performance even further. Research in neural machine translation has shown that employing this information has a lot of potential, especially when using a multi-encoder setup. We employ a range of semantic and syntactic resources to improve performance for the task of Discourse Representation Structure Parsing. We show that (i) linguistic features can be beneficial for neural semantic parsing and (ii) the best method of adding these features is by using multiple encoders.
The paper presents the IWCS 2019 shared task on semantic parsing where the goal is to produce Discourse Representation Structures (DRSs) for English sentences. DRSs originate from Discourse Representation Theory and represent scoped meaning representations that capture the semantics of negation, modals, quantification, and presupposition triggers. Additionally, concepts and event-participants in DRSs are described with WordNet synsets and the thematic roles from VerbNet. To measure similarity between two DRSs, they are represented in a clausal form, i.e. as a set of tuples. Participant systems were expected to produce DRSs in this clausal form. Taking into account the rich lexical information, explicit scope marking, a high number of shared variables among clauses, and highly-constrained format of valid DRSs, all these makes the DRS parsing a challenging NLP task. The results of the shared task displayed improvements over the existing state-of-the-art parser.
This paper describes our participation in the shared task of Discourse Representation Structure parsing. It follows the work of Van Noord et al. (2018), who employed a neural sequence-to-sequence model to produce DRSs, also exploiting linguistic information with multiple encoders. We provide a detailed look in the performance of this model and show that (i) the benefit of the linguistic features is evident across a number of experiments which vary the amount of training data and (ii) the model can be improved by applying a number of postprocessing methods to fix ill-formed output. Our model ended up in second place in the competition, with an F-score of 84.5.
The present study describes our submission to SemEval 2018 Task 1: Affect in Tweets. Our Spanish-only approach aimed to demonstrate that it is beneficial to automatically generate additional training data by (i) translating training data from other languages and (ii) applying a semi-supervised learning method. We find strong support for both approaches, with those models outperforming our regular models in all subtasks. However, creating a stepwise ensemble of different models as opposed to simply averaging did not result in an increase in performance. We placed second (EI-Reg), second (EI-Oc), fourth (V-Reg) and fifth (V-Oc) in the four Spanish subtasks we participated in.
Neural methods have had several recent successes in semantic parsing, though they have yet to face the challenge of producing meaning representations based on formal semantics. We present a sequence-to-sequence neural semantic parser that is able to produce Discourse Representation Structures (DRSs) for English sentences with high accuracy, outperforming traditional DRS parsers. To facilitate the learning of the output, we represent DRSs as a sequence of flat clauses and introduce a method to verify that produced DRSs are well-formed and interpretable. We compare models using characters and words as input and see (somewhat surprisingly) that the former performs better than the latter. We show that eliminating variable names from the output using De Bruijn indices increases parser performance. Adding silver training data boosts performance even further.
We evaluate a semantic parser based on a character-based sequence-to-sequence model in the context of the SemEval-2017 shared task on semantic parsing for AMRs. With data augmentation, super characters, and POS-tagging we gain major improvements in performance compared to a baseline character-level model. Although we improve on previous character-based neural semantic parsing models, the overall accuracy is still lower than a state-of-the-art AMR parser. An ensemble combining our neural semantic parser with an existing, traditional parser, yields a small gain in performance.
The Parallel Meaning Bank is a corpus of translations annotated with shared, formal meaning representations comprising over 11 million words divided over four languages (English, German, Italian, and Dutch). Our approach is based on cross-lingual projection: automatically produced (and manually corrected) semantic annotations for English sentences are mapped onto their word-aligned translations, assuming that the translations are meaning-preserving. The semantic annotation consists of five main steps: (i) segmentation of the text in sentences and lexical items; (ii) syntactic parsing with Combinatory Categorial Grammar; (iii) universal semantic tagging; (iv) symbolization; and (v) compositional semantic analysis based on Discourse Representation Theory. These steps are performed using statistical models trained in a semi-supervised manner. The employed annotation models are all language-neutral. Our first results are promising.