Rachneet Sachdeva


2024

pdf
CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain Performance and Calibration
Rachneet Sachdeva | Martin Tutek | Iryna Gurevych
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

In recent years, large language models (LLMs) have shown remarkable capabilities at scale, particularly at generating text conditioned on a prompt. In our work, we investigate the use of LLMs to augment training data of smaller language models (SLMs) with automatically generated counterfactual (CF) instances – i.e. minimally altered inputs – in order to improve out-of-domain (OOD) performance of SLMs in the extractive question answering (QA) setup. We show that, across various LLM generators, such data augmentation consistently enhances OOD performance and improves model calibration for both confidence-based and rationale-augmented calibrator models. Furthermore, these performance improvements correlate with higher diversity of CF instances in terms of their surface form and semantic content. Finally, we show that CF augmented models which are easier to calibrate also exhibit much lower entropy when assigning importance, indicating that rationale-augmented calibrators prefer concise explanations.

pdf
Are Emergent Abilities in Large Language Models just In-Context Learning?
Sheng Lu | Irina Bigoulaeva | Rachneet Sachdeva | Harish Tayyar Madabushi | Iryna Gurevych
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models, comprising billions of parameters and pre-trained on extensive web-scale corpora, have been claimed to acquire certain capabilities without having been specifically trained on them. These capabilities, referred to as “emergent abilities,” have been a driving force in discussions regarding the potentials and risks of language models. A key challenge in evaluating emergent abilities is that they are confounded by model competencies that arise through alternative prompting techniques, including in-context learning, which is the ability of models to complete a task based on a few examples. We present a novel theory that explains emergent abilities, taking into account their potential confounding factors, and rigorously substantiate this theory through over 1000 experiments. Our findings suggest that purported emergent abilities are not truly emergent, but result from a combination of in-context learning, model memory, and linguistic knowledge. Our work is a foundational step in explaining language model performance, providing a template for their efficient use and clarifying the paradox of their ability to excel in some instances while faltering in others. Thus, we demonstrate that their capabilities should not be overestimated.

2023

pdf
UKP-SQuARE v3: A Platform for Multi-Agent QA Research
Haritz Puerto | Tim Baumgärtner | Rachneet Sachdeva | Haishuo Fang | Hao Zhang | Sewin Tariverdian | Kexin Wang | Iryna Gurevych
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The continuous development of Question Answering (QA) datasets has drawn the research community’s attention toward multi-domain models. A popular approach is to use multi-dataset models, which are models trained on multiple datasets to learn their regularities and prevent overfitting to a single dataset. However, with the proliferation of QA models in online repositories such as GitHub or Hugging Face, an alternative is becoming viable. Recent works have demonstrated that combining expert agents can yield large performance gains over multi-dataset models. To ease research in multi-agent models, we extend UKP-SQuARE, an online platform for QA research, to support three families of multi-agent systems: i) agent selection, ii) early-fusion of agents, and iii) late-fusion of agents. We conduct experiments to evaluate their inference speed and discuss the performance vs. speed trade-off compared to multi-dataset models. UKP-SQuARE is open-source and publicly available.

2022

pdf
UKP-SQuARE v2: Explainability and Adversarial Attacks for Trustworthy QA
Rachneet Sachdeva | Haritz Puerto | Tim Baumgärtner | Sewin Tariverdian | Hao Zhang | Kexin Wang | Hossain Shaikh Saadi | Leonardo F. R. Ribeiro | Iryna Gurevych
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations

Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model’s prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on https://square.ukp-lab.de.

pdf bib
UKP-SQUARE: An Online Platform for Question Answering Research
Tim Baumgärtner | Kexin Wang | Rachneet Sachdeva | Gregor Geigle | Max Eichler | Clifton Poth | Hannah Sterz | Haritz Puerto | Leonardo F. R. Ribeiro | Jonas Pfeiffer | Nils Reimers | Gözde Şahin | Iryna Gurevych
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g., generative, discriminative), and setups (e.g., with or without retrieval). Despite having a large number of powerful, specialized QA pipelines (which we refer to as Skills) that consider a single domain, model or setup, there exists no framework where users can easily explore and compare such pipelines and can extend them according to their needs. To address this issue, we present UKP-SQuARE, an extensible online QA platform for researchers which allows users to query and analyze a large collection of modern Skills via a user-friendly web interface and integrated behavioural tests. In addition, QA researchers can develop, manage, and share their custom Skills using our microservices that support a wide range of models (Transformers, Adapters, ONNX), datastores and retrieval techniques (e.g., sparse and dense). UKP-SQuARE is available on https://square.ukp-lab.de