Qineng Wang
2024
Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the Key?
Qineng Wang
|
Zihao Wang
|
Ying Su
|
Hanghang Tong
|
Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent progress in LLMs discussion suggests that multi-agent discussion improves the reasoning abilities of LLMs. In this work, we reevaluate this claim through systematic experiments, where we propose a novel group discussion framework to enrich the set of discussion mechanisms. Interestingly, our results show that a single-agent LLM with strong prompts can achieve almost the same best performance as the best existing discussion approach on a wide range of reasoning tasks and backbone LLMs. We observed that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt. Further study reveals the common interaction mechanisms of LLMs during the discussion. Our code can be found in https://github.com/HKUST-KnowComp/LLM-discussion.