Pin-Jie Lin


2024

pdf
Projecting Annotations for Discourse Relations: Connective Identification for Low-Resource Languages
Peter Bourgonje | Pin-Jie Lin
Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)

We present a pipeline for multi-lingual Shallow Discourse Parsing. The pipeline exploits Machine Translation and Word Alignment, by translating any incoming non-English input text into English, applying an English discourse parser, and projecting the found relations onto the original input text through word alignments. While the purpose of the pipeline is to provide rudimentary discourse relation annotations for low-resource languages, in order to get an idea of performance, we evaluate it on the sub-task of discourse connective identification for several languages for which gold data are available. We experiment with different setups of our modular pipeline architecture and analyze intermediate results. Our code is made available on GitHub.

pdf
Modeling Orthographic Variation Improves NLP Performance for Nigerian Pidgin
Pin-Jie Lin | Merel Scholman | Muhammed Saeed | Vera Demberg
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Nigerian Pidgin is an English-derived contact language and is traditionally an oral language, spoken by approximately 100 million people. No orthographic standard has yet been adopted, and thus the few available Pidgin datasets that exist are characterised by noise in the form of orthographic variations. This contributes to under-performance of models in critical NLP tasks. The current work is the first to describe various types of orthographic variations commonly found in Nigerian Pidgin texts, and model this orthographic variation. The variations identified in the dataset form the basis of a phonetic-theoretic framework for word editing, which is used to generate orthographic variations to augment training data. We test the effect of this data augmentation on two critical NLP tasks: machine translation and sentiment analysis. The proposed variation generation framework augments the training data with new orthographic variants which are relevant for the test set but did not occur in the training set originally. Our results demonstrate the positive effect of augmenting the training data with a combination of real texts from other corpora as well as synthesized orthographic variation, resulting in performance improvements of 2.1 points in sentiment analysis and 1.4 BLEU points in translation to English.

pdf
Exploring the Effectiveness and Consistency of Task Selection in Intermediate-Task Transfer Learning
Pin-Jie Lin | Miaoran Zhang | Marius Mosbach | Dietrich Klakow
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Identifying beneficial tasks to transfer from is a critical step toward successful intermediate-task transfer learning. In this work, we experiment with 130 source-target task combinations and demonstrate that the transfer performance exhibits severe variance across different source tasks and training seeds, highlighting the crucial role of intermediate-task selection in a broader context. We compare four representative task selection methods in a unified setup, focusing on their effectiveness and consistency. Compared to embedding-free methods and text embeddings, task embeddings constructed from fine-tuned weights can better estimate task transferability by improving task prediction scores from 2.59% to 3.96%. Despite their strong performance, we observe that the task embeddings do not consistently demonstrate superiority for tasks requiring reasoning abilities. Furthermore, we introduce a novel method that measures pairwise token similarity using maximum inner product search, leading to the highest performance in task prediction. Our findings suggest that token-wise similarity is better predictive for predicting transferability compared to averaging weights.

2023

pdf
Revisiting Sample Size Determination in Natural Language Understanding
Ernie Chang | Muhammad Hassan Rashid | Pin-Jie Lin | Changsheng Zhao | Vera Demberg | Yangyang Shi | Vikas Chandra
Findings of the Association for Computational Linguistics: ACL 2023

Knowing exactly how many data points need to be labeled to achieve a certain model performance is a hugely beneficial step towards reducing the overall budgets for annotation. It pertains to both active learning and traditional data annotation, and is particularly beneficial for low resource scenarios. Nevertheless, it remains a largely under-explored area of research in NLP. We therefore explored various techniques for estimating the training sample size necessary to achieve a targeted performance value. We derived a simple yet effective approach to predict the maximum achievable model performance based on small amount of training samples – which serves as an early indicator during data annotation for data quality and sample size determination. We performed ablation studies on four language understanding tasks, and showed that the proposed approach allows us to forecast model performance within a small margin of mean absolute error (~0.9%) with only 10% data.

2022

pdf
Two-Stage Movie Script Summarization: An Efficient Method For Low-Resource Long Document Summarization
Dongqi Pu | Xudong Hong | Pin-Jie Lin | Ernie Chang | Vera Demberg
Proceedings of The Workshop on Automatic Summarization for Creative Writing

The Creative Summarization Shared Task at COLING 2022 aspires to generate summaries given long-form texts from creative writing. This paper presents the system architecture and the results of our participation in the Scriptbase track that focuses on generating movie plots given movie scripts. The core innovation in our model employs a two-stage hierarchical architecture for movie script summarization. In the first stage, a heuristic extraction method is applied to extract actions and essential dialogues, which reduces the average length of input movie scripts by 66% from about 24K to 8K tokens. In the second stage, a state-of-the-art encoder-decoder model, Longformer-Encoder-Decoder (LED), is trained with effective fine-tuning methods, BitFit and NoisyTune. Evaluations on the unseen test set indicate that our system outperforms both zero-shot LED baselines as well as other participants on various automatic metrics and ranks 1st in the Scriptbase track.