Petar Milin
2022
Abstraction not Memory: BERT and the English Article System
Harish Tayyar Madabushi
|
Dagmar Divjak
|
Petar Milin
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Article prediction is a task that has long defied accurate linguistic description. As such, this task is ideally suited to evaluate models on their ability to emulate native-speaker intuition. To this end, we compare the performance of native English speakers and pre-trained models on the task of article prediction set up as a three way choice (a/an, the, zero). Our experiments with BERT show that BERT outperforms humans on this task across all articles. In particular, BERT is far superior to humans at detecting the zero article, possibly because we insert them using rules that the deep neural model can easily pick up. More interestingly, we find that BERT tends to agree more with annotators than with the corpus when inter-annotator agreement is high but switches to agreeing more with the corpus as inter-annotator agreement drops. We contend that this alignment with annotators, despite being trained on the corpus, suggests that BERT is not memorising article use, but captures a high level generalisation of article use akin to human intuition.
2020
CxGBERT: BERT meets Construction Grammar
Harish Tayyar Madabushi
|
Laurence Romain
|
Dagmar Divjak
|
Petar Milin
Proceedings of the 28th International Conference on Computational Linguistics
While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT’s training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexico-semantics.
2003
Text as Binary Sequence: A Case of Characteristic Constant of Text
Petar Milin
|
Nada Ilic
Proceedings of 4th International Workshop on Linguistically Interpreted Corpora (LINC-03) at EACL 2003
Search