Noritake Adachi


2020

pdf
Generating Responses that Reflect Meta Information in User-Generated Question Answer Pairs
Takashi Kodama | Ryuichiro Higashinaka | Koh Mitsuda | Ryo Masumura | Yushi Aono | Ryuta Nakamura | Noritake Adachi | Hidetoshi Kawabata
Proceedings of the Twelfth Language Resources and Evaluation Conference

This paper concerns the problem of realizing consistent personalities in neural conversational modeling by using user generated question-answer pairs as training data. Using the framework of role play-based question answering, we collected single-turn question-answer pairs for particular characters from online users. Meta information was also collected such as emotion and intimacy related to question-answer pairs. We verified the quality of the collected data and, by subjective evaluation, we also verified their usefulness in training neural conversational models for generating utterances reflecting the meta information, especially emotion.

2018

pdf
Role play-based question-answering by real users for building chatbots with consistent personalities
Ryuichiro Higashinaka | Masahiro Mizukami | Hidetoshi Kawabata | Emi Yamaguchi | Noritake Adachi | Junji Tomita
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

Having consistent personalities is important for chatbots if we want them to be believable. Typically, many question-answer pairs are prepared by hand for achieving consistent responses; however, the creation of such pairs is costly. In this study, our goal is to collect a large number of question-answer pairs for a particular character by using role play-based question-answering in which multiple users play the roles of certain characters and respond to questions by online users. Focusing on two famous characters, we conducted a large-scale experiment to collect question-answer pairs by using real users. We evaluated the effectiveness of role play-based question-answering and found that, by using our proposed method, the collected pairs lead to good-quality chatbots that exhibit consistent personalities.