Muhammad Sohaib Ayub


2024

pdf
Detecting Cybercrimes in Accordance with Pakistani Law: Dataset and Evaluation Using PLMs
Faizad Ullah | Ali Faheem | Ubaid Azam | Muhammad Sohaib Ayub | Faisal Kamiran | Asim Karim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Cybercrime is a serious and growing threat affecting millions of people worldwide. Detecting cybercrimes from text messages is challenging, as it requires understanding the linguistic and cultural nuances of different languages and regions. Roman Urdu is a widely used language in Pakistan and other South Asian countries, however, it lacks sufficient resources and tools for natural language processing and cybercrime detection. To address this problem, we make three main contributions in this paper. (1) We create and release CRU, a benchmark dataset for text-based cybercrime detection in Roman Urdu, which covers a number of cybercrimes as defined by the Prevention of Electronic Crimes Act (PECA) of Pakistan. This dataset is annotated by experts following a standardized procedure based on Pakistan’s legal framework. (2) We perform experiments on four pre-trained language models (PLMs) for cybercrime text classification in Roman Urdu. Our results show that xlm-roberta-base is the best model for this task, achieving the highest performance on all metrics. (3) We explore the utility of prompt engineering techniques, namely prefix and cloze prompts, for enhancing the performance of PLMs for low-resource languages such as Roman Urdu. We analyze the impact of different prompt shapes and k-shot settings on the performance of xlm-roberta-base and bert-base-multilingual-cased. We find that prefix prompts are more effective than cloze prompts for Roman Urdu classification tasks, as they provide more contextually relevant completions for the models. Our work provides useful insights and resources for future research on cybercrime detection and text classification in low-resource languages.

pdf
UrduMASD: A Multimodal Abstractive Summarization Dataset for Urdu
Ali Faheem | Faizad Ullah | Muhammad Sohaib Ayub | Asim Karim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this era of multimedia dominance, the surge of multimodal content on social media has transformed our methods of communication and information exchange. With the widespread use of multimedia content, the ability to effectively summarize this multimodal content is crucial for enhancing consumption, searchability, and retrieval. The scarcity of such training datasets has been a barrier to research in this area, especially for low-resource languages like Urdu. To address this gap, this paper introduces “UrduMASD”, a video-based Urdu multimodal abstractive text summarization dataset. The dataset contains 15,374 collections of videos, audio, titles, transcripts, and corresponding text summaries. To ensure the quality of the dataset, intrinsic evaluation metrics such as Abstractivity, Compression, Redundancy, and Semantic coherence have been employed. It was observed that our dataset surpasses existing datasets on numerous key quality metrics. Additionally, we present baseline results achieved using both text-based and state-of-the-art multimodal summarization models. On adding visual information, an improvement of 2.6% was observed in the ROUGE scores, highlighting the efficacy of utilizing multimodal inputs for summarization. To the best of our knowledge, this is the first dataset in Urdu that provides video-based multimodal data for abstractive text summarization, making it a valuable resource for advancing research in this field.