Mohammadreza Davari
Also published as: MohammadReza Davari
2024
CLaC at SemEval-2024 Task 2: Faithful Clinical Trial Inference
Jennifer Marks
|
Mohammadreza Davari
|
Leila Kosseim
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
This paper presents the methodology used for our participation in SemEval 2024 Task 2 (Jullien et al., 2024) – Safe Biomedical Natural Language Inference for Clinical Trials. The task involved Natural Language Inference (NLI) on clinical trial data, where statements were provided regarding information within Clinical Trial Reports (CTRs). These statements could pertain to a single CTR or compare two CTRs, requiring the identification of the inference relation (entailment vs contradiction) between CTR-statement pairs. Evaluation was based on F1, Faithfulness, and Consistency metrics, with priority given to the latter two by the organizers. Our approach aims to maximize Faithfulness and Consistency, guided by intuitive definitions provided by the organizers, without detailed metric calculations. Experimentally, our approach yielded models achieving maximal Faithfulness (top rank) and average Consistency (mid rank) at the expense of F1 (low rank). Future work will focus on refining our approach to achieve a balance among all three metrics.
2020
TIMBERT: Toponym Identifier For The Medical Domain Based on BERT
MohammadReza Davari
|
Leila Kosseim
|
Tien Bui
Proceedings of the 28th International Conference on Computational Linguistics
In this paper, we propose an approach to automate the process of place name detection in the medical domain to enable epidemiologists to better study and model the spread of viruses. We created a family of Toponym Identification Models based on BERT (TIMBERT), in order to learn in an end-to-end fashion the mapping from an input sentence to the associated sentence labeled with toponyms. When evaluated with the SemEval 2019 task 12 test set (Weissenbacher et al., 2019), our best TIMBERT model achieves an F1 score of 90.85%, a significant improvement compared to the state-of-the-art of 89.13% (Wang et al., 2019).
Search