Moges Ahmed Ah Mehamed
2024
EthioLLM: Multilingual Large Language Models for Ethiopian Languages with Task Evaluation
Atnafu Lambebo Tonja
|
Israel Abebe Azime
|
Tadesse Destaw Belay
|
Mesay Gemeda Yigezu
|
Moges Ahmed Ah Mehamed
|
Abinew Ali Ayele
|
Ebrahim Chekol Jibril
|
Michael Melese Woldeyohannis
|
Olga Kolesnikova
|
Philipp Slusallek
|
Dietrich Klakow
|
Seid Muhie Yimam
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large language models (LLMs) have gained popularity recently due to their outstanding performance in various downstream Natural Language Processing (NLP) tasks. However, low-resource languages are still lagging behind current state-of-the-art (SOTA) developments in the field of NLP due to insufficient resources to train LLMs. Ethiopian languages exhibit remarkable linguistic diversity, encompassing a wide array of scripts, and are imbued with profound religious and cultural significance. This paper introduces EthioLLM – multilingual large language models for five Ethiopian languages (Amharic, Ge’ez, Afan Oromo, Somali, and Tigrinya) and English, and Ethiobenchmark – a new benchmark dataset for various downstream NLP tasks. We evaluate the performance of these models across five downstream NLP tasks. We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models. Our dataset and models are available at the https://huggingface.co/EthioNLP repository.