Maintenance short texts (MST), derived from maintenance work order records, encapsulate crucial information in a concise yet information-rich format. These user-generated technical texts provide critical insights into the state and maintenance activities of machines, infrastructure, and other engineered assets–pillars of the modern economy. Despite their importance for asset management decision-making, extracting and leveraging this information at scale remains a significant challenge. This paper presents MaintIE, a multi-level fine-grained annotation scheme for entity recognition and relation extraction, consisting of 5 top-level classes: PhysicalObject, State, Process, Activity and Property and 224 leaf entities, along with 6 relations tailored to MSTs. Using MaintIE, we have curated a multi-annotator, high-quality, fine-grained corpus of 1,076 annotated texts. Additionally, we present a coarse-grained corpus of 7,000 texts and consider its performance for bootstrapping and enhancing fine-grained information extraction. Using these corpora, we provide model performance measures for benchmarking automated entity recognition and relation extraction. The MaintIE scheme, corpus, and model are publicly available at https://github.com/nlp-tlp/maintie under the MIT license, encouraging further community exploration and innovation in extracting valuable insights from MSTs.
Maintenance short texts are invaluable unstructured data sources, serving as a diagnostic and prognostic window into the operational health and status of physical assets. These user-generated texts, created during routine or ad-hoc maintenance activities, offer insights into equipment performance, potential failure points, and maintenance needs. However, the use of information captured in these texts is hindered by inherent challenges: the prevalence of engineering jargon, domain-specific vernacular, random spelling errors without identifiable patterns, and the absence of standard grammatical structures. To transform these texts into accessible and analysable data, we introduce the MaintNorm dataset, the first resource specifically tailored for the lexical normalisation task of maintenance short texts. Comprising 12,000 examples, this dataset enables the efficient processing and interpretation of these texts. We demonstrate the utility of MaintNorm by training a lexical normalisation model as a sequence-to-sequence learning task with two learning objectives, namely, enhancing the quality of the texts and masking segments to obscure sensitive information to anonymise data. Our benchmark model demonstrates a universal error reduction rate of 95.8%. The dataset and benchmark outcomes are available to the public.