Most existing reading comprehension datasets focus on single-span answers, which can be extracted as a single contiguous span from a given text passage. Multi-span questions, i.e., questions whose answer is a series of multiple discontiguous spans in the text, are common real life but are less studied. In this paper, we present MultiSpanQA, a new dataset that focuses on multi-span questions. Raw questions and contexts are extracted from the Natural Questions dataset. After multi-span re-annotation, MultiSpanQA consists of over a total of 6,000 multi-span questions in the basic version, and over 19,000 examples with unanswerable questions, and questions with single-, and multi-span answers in the expanded version. We introduce new metrics for the purposes of multi-span question answering evaluation, and establish several baselines using advanced models. Finally, we propose a new model which beats all baselines and achieves state-of-the-art on our dataset.
Existing metonymy resolution approaches rely on features extracted from external resources like dictionaries and hand-crafted lexical resources. In this paper, we propose an end-to-end word-level classification approach based only on BERT, without dependencies on taggers, parsers, curated dictionaries of place names, or other external resources. We show that our approach achieves the state-of-the-art on 5 datasets, surpassing conventional BERT models and benchmarks by a large margin. We also show that our approach generalises well to unseen data.
This paper describes our submission to SemEval-2019 Task 12 on toponym resolution over scientific articles. We train separate NER models for toponym detection over text extracted from tables vs. text from the body of the paper, and train another auxiliary model to eliminate misdetected toponyms. For toponym disambiguation, we use an SVM classifier with hand-engineered features. The best setting achieved a strict micro-F1 score of 80.92% and overlap micro-F1 score of 86.88% in the toponym detection subtask, ranking 2nd out of 8 teams on F1 score. For toponym disambiguation and end-to-end resolution, we officially ranked 2nd and 3rd, respectively.