Long Cheng
2024
TEII: Think, Explain, Interact and Iterate with Large Language Models to Solve Cross-lingual Emotion Detection
Long Cheng
|
Qihao Shao
|
Christine Zhao
|
Sheng Bi
|
Gina-Anne Levow
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
Cross-lingual emotion detection allows us to analyze global trends, public opinion, and social phenomena at scale. We participated in the Explainability of Cross-lingual Emotion Detection (EXALT) shared task, achieving an F1-score of 0.6046 on the evaluation set for the emotion detection sub-task. Our system outperformed the baseline by more than 0.16 F1-score absolute, and ranked second amongst competing systems. We conducted experiments using fine-tuning, zero-shot learning, and few-shot learning for Large Language Model (LLM)-based models as well as embedding-based BiLSTM and KNN for non-LLM-based techniques. Additionally, we introduced two novel methods: the Multi-Iteration Agentic Workflow and the Multi-Binary-Classifier Agentic Workflow. We found that LLM-based approaches provided good performance on multilingual emotion detection. Furthermore, ensembles combining all our experimented models yielded higher F1-scores than any single approach alone.
2022
Multi-level Distillation of Semantic Knowledge for Pre-training Multilingual Language Model
Mingqi Li
|
Fei Ding
|
Dan Zhang
|
Long Cheng
|
Hongxin Hu
|
Feng Luo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Pre-trained multilingual language models play an important role in cross-lingual natural language understanding tasks. However, existing methods did not focus on learning the semantic structure of representation, and thus could not optimize their performance. In this paper, we propose Multi-level Multilingual Knowledge Distillation (MMKD), a novel method for improving multilingual language models. Specifically, we employ a teacher-student framework to adopt rich semantic representation knowledge in English BERT. We propose token-, word-, sentence-, and structure-level alignment objectives to encourage multiple levels of consistency between source-target pairs and correlation similarity between teacher and student models. We conduct experiments on cross-lingual evaluation benchmarks including XNLI, PAWS-X, and XQuAD. Experimental results show that MMKD outperforms other baseline models of similar size on XNLI and XQuAD and obtains comparable performance on PAWS-X. Especially, MMKD obtains significant performance gains on low-resource languages.
Search
Co-authors
- Qihao Shao 1
- Christine Zhao 1
- Sheng Bi 1
- Gina-Anne Levow 1
- Mingqi Li 1
- show all...