Lin Shang


2024

pdf
Autonomous Aspect-Image Instruction a2II: Q-Former Guided Multimodal Sentiment Classification
Junjia Feng | Mingqian Lin | Lin Shang | Xiaoying Gao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal aspect-oriented sentiment classification (MABSC) task has garnered significant attention, which aims to identify the sentiment polarities of aspects by combining both language and vision information. However, the limited multimodal data in this task has become a big gap for the vision-language multimodal fusion. While large-scale vision-language pretrained models have been adapted to multiple tasks, their use for MABSC task is still in a nascent stage. In this work, we present an attempt to use the instruction tuning paradigm to MABSC task and leverage the ability of large vision-language models to alleviate the limitation in the fusion of textual and image modalities. To tackle the problem of potential irrelevance between aspects and images, we propose a plug-and-play selector to autonomously choose the most appropriate instruction from the instruction pool, thereby reducing the impact of irrelevant image noise on the final sentiment classification results. We conduct extensive experiments in various scenarios and our model achieves state-of-the-art performance on benchmark datasets, as well as in few-shot settings.

2022

pdf
Efficient Nearest Neighbor Emotion Classification with BERT-whitening
Wenbiao Yin | Lin Shang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Retrieval-based methods have been proven effective in many NLP tasks. Previous methods use representations from the pre-trained model for similarity search directly. However, the sentence representations from the pre-trained model like BERT perform poorly in retrieving semantically similar sentences, resulting in poor performance of the retrieval-based methods. In this paper, we propose kNN-EC, a simple and efficient non-parametric emotion classification (EC) method using nearest neighbor retrieval. We use BERT-whitening to get better sentence semantics, ensuring that nearest neighbor retrieval works. Meanwhile, BERT-whitening can also reduce memory storage of datastore and accelerate retrieval speed, solving the efficiency problem of the previous methods. kNN-EC average improves the pre-trained model by 1.17 F1-macro on two emotion classification datasets.