This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present an overview of the Biomedical Translation Task that was part of the Eighth Conference on Machine Translation (WMT23). The aim of the task was the automatic translation of biomedical abstracts from the PubMed database. It included twelve language directions, namely, French, Spanish, Portuguese, Italian, German, and Russian, from and into English. We received submissions from 18 systems and for all the test sets that we released. Our comparison system was based on ChatGPT 3.5 and performed very well in comparison to many of the submissions.
In the seventh edition of the WMT Biomedical Task, we addressed a total of seven languagepairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian. This year’s test sets covered three types of biomedical text genre. In addition to scientific abstracts and terminology items used in previous editions, we released test sets of clinical cases. The evaluation of clinical cases translations were given special attention by involving clinicians in the preparation of reference translations and manual evaluation. For the main MEDLINE test sets, we received a total of 609 submissions from 37 teams. For the ClinSpEn sub-task, we had the participation of five teams.
In the sixth edition of the WMT Biomedical Task, we addressed a total of eight language pairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian, and English/Basque. Further, our tests were composed of three types of textual test sets. New to this year, we released a test set of summaries of animal experiments, in addition to the test sets of scientific abstracts and terminologies. We received a total of 107 submissions from 15 teams from 6 countries.
With the growing availability of full-text articles, integrating abstracts and full texts of documents into a unified representation is essential for comprehensive search of scientific literature. However, previous studies have shown that naïvely merging abstracts with full texts of articles does not consistently yield better performance. Balancing the contribution of query terms appearing in the abstract and in sections of different importance in full text articles remains a challenge both with traditional bag-of-words IR approaches and for neural retrieval methods. In this work we establish the connection between the BM25 score of a query term appearing in a section of a full text document and the probability of that document being clicked or identified as relevant. Probability is computed using Pool Adjacent Violators (PAV), an isotonic regression algorithm, providing a maximum likelihood estimate based on the observed data. Using this probabilistic transformation of BM25 scores we show an improved performance on the PubMed Click dataset developed and presented in this study, as well as the 2007 TREC Genomics collection.
Machine translation of scientific abstracts and terminologies has the potential to support health professionals and biomedical researchers in some of their activities. In the fifth edition of the WMT Biomedical Task, we addressed a total of eight language pairs. Five language pairs were previously addressed in past editions of the shared task, namely, English/German, English/French, English/Spanish, English/Portuguese, and English/Chinese. Three additional languages pairs were also introduced this year: English/Russian, English/Italian, and English/Basque. The task addressed the evaluation of both scientific abstracts (all language pairs) and terminologies (English/Basque only). We received submissions from a total of 20 teams. For recurring language pairs, we observed an improvement in the translations in terms of automatic scores and qualitative evaluations, compared to previous years.
A search that is targeted at finding a specific document in databases is called a Single Citation search. Single citation searches are particularly important for scholarly databases, such as PubMed, because users are frequently searching for a specific publication. In this work we describe SingleCite, a single citation matching system designed to facilitate user’s search for a specific document. We report on the progress that has been achieved towards building that functionality.
Creating simulated search environments has been of a significant interest in infor-mation retrieval, in both general and bio-medical search domains. Existing collec-tions include modest number of queries and are constructed by manually evaluat-ing retrieval results. In this work we pro-pose leveraging MeSH term assignments for creating synthetic test beds. We select a suitable subset of MeSH terms as queries, and utilize MeSH term assignments as pseudo-relevance rankings for retrieval evaluation. Using well studied retrieval functions, we show that their performance on the proposed data is consistent with similar findings in previous work. We further use the proposed retrieval evaluation framework to better understand how to combine heterogeneous sources of textual information.