Kshitish Ghate


2024

pdf
Calc-CMU at SemEval-2024 Task 7: Pre-Calc - Learning to Use the Calculator Improves Numeracy in Language Models
Vishruth Veerendranath | Vishwa Shah | Kshitish Ghate
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Quantitative and numerical comprehension in language is an important task in many fields like education and finance, but still remains a challenging task for language models. While tool and calculator usage has shown to be helpful to improve mathematical reasoning in large pretrained decoder-only language models, this remains unexplored for smaller language models with encoders. In this paper, we propose Pre-Calc, a simple pre-finetuning objective of learning to use the calculator for both encoder-only and encoder-decoder architectures, formulated as a discriminative and generative task respectively. We pre-train BERT and RoBERTa for discriminative calculator use and Flan-T5 for generative calculator use on the MAWPS, SVAMP, and AsDiv-A datasets, which improves performance on downstream tasks that require numerical understanding. Our code and data are available at https://github.com/calc-cmu/pre-calc.

pdf
Evaluating Gender Bias in Multilingual Multimodal AI Models: Insights from an Indian Context
Kshitish Ghate | Arjun Choudhry | Vanya Bannihatti Kumar
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

We evaluate gender biases in multilingual multimodal image and text models in two settings: text-to-image retrieval and text-to-image generation, to show that even seemingly gender-neutral traits generate biased results. We evaluate our framework in the context of people from India, working with two languages: English and Hindi. We work with frameworks built around mCLIP-based models to ensure a thorough evaluation of recent state-of-the-art models in the multilingual setting due to their potential for widespread applications. We analyze the results across 50 traits for retrieval and 8 traits for generation, showing that current multilingual multimodal models are biased towards men for most traits, and this problem is further exacerbated for lower-resource languages like Hindi. We further discuss potential reasons behind this observation, particularly stemming from the bias introduced by the pretraining datasets.