This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The primary objective of sign language translation (SLT) is to transform sign language videos into natural sentences.A crucial challenge in this field is developing signer-independent SLT systems which requires models to generalize effectively to signers not encountered during training.This challenge is exacerbated by the limited diversity of signers in existing SLT datasets, which often results in suboptimal generalization capabilities of current models.Achieving robustness to unseen signers is essential for signer-independent SLT.However, most existing method relies on signer identity labels, which is often impractical and costly in real-world applications.To address this issue, we propose the Signer Diversity-driven Data Augmentation (SDDA) method that can achieve good generalization without relying on signer identity labels. SDDA comprises two data augmentation schemes. The first is data augmentation based on adversarial training, which aims to utilize the gradients of the model to generate adversarial examples. The second is data augmentation based on diffusion model, which focuses on using the advanced diffusion-based text guided image editing method to modify the appearances of the signer in images. The combination of the two strategies significantly enriches the diversity of signers in the training process.Moreover, we introduce a consistency loss and a discrimination loss to enhance the learning of signer-independent features.Our experimental results demonstrate our model significantly enhances the performance of SLT in the signer-independent setting, achieving state-of-the-art results without relying on signer identity labels.
Cross-document Relation Extraction aims to predict the relation between target entities located in different documents. In this regard, the dominant models commonly retain useful information for relation prediction via bridge entities, which allows the model to elaborately capture the intrinsic interdependence between target entities. However, these studies ignore the non-bridge entities, each of which co-occurs with only one target entity and offers the semantic association between target entities for relation prediction. Besides, the commonly-used dataset–CodRED contains substantial NA instances, leading to the prediction bias during inference. To address these issues, in this paper, we propose a novel graph-based cross-document RE model with non-bridge entity enhancement and prediction debiasing. Specifically, we use a unified entity graph to integrate numerous non-bridge entities with target entities and bridge entities, modeling various associations between them, and then use a graph recurrent network to encode this graph. Finally, we introduce a novel debiasing strategy to calibrate the original prediction distribution. Experimental results on the closed and open settings show that our model significantly outperforms all baselines, including the GPT-3.5-turbo and InstructUIE, achieving state-of-the-art performance. Particularly, our model obtains 66.23% and 55.87% AUC points in the official leaderboard under the two settings, respectively,ranking the first place in all submissions since December 2023. Our code is available at https://github.com/DeepLearnXMU/CoRE-NEPD.
In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language. In this regard, conventional cascaded methods suffer from issues such as error propagation, massive parameters, and difficulties in deployment and retaining visual characteristics of the input image.Thus, constructing end-to-end models has become an option, which, however, faces two main challenges: 1) the huge modeling burden, as it is required to simultaneously learn alignment across languages and preserve the visual characteristics of the input image; 2) the difficulties of directly predicting excessively lengthy pixel sequences.In this paper, we propose Translatotron-V(ision), an end-to-end IIMT model consisting of four modules. In addition to an image encoder, and an image decoder, our model contains a target text decoder and an image tokenizer. Among them, the target text decoder is used to alleviate the language alignment burden, and the image tokenizer converts long sequences of pixels into shorter sequences of visual tokens, preventing the model from focusing on low-level visual features. Besides, we present a two-stage training framework for our model to assist the model in learning alignment across modalities and languages. Finally, we propose a location-aware evaluation metric called Structure-BLEU to assess the translation quality of the generated images. Experimental results demonstrate that our model achieves competitive performance compared to cascaded models with only 70.9% of parameters, and significantly outperforms the pixel-level end-to-end IIMT model.
To achieve non-parametric NMT domain adaptation, k-Nearest-Neighbor Machine Translation (kNN-MT) constructs an external datastore to store domain-specific translation knowledge, which derives a kNN distribution to interpolate the prediction distribution of the NMT model via a linear interpolation coefficient 𝜆. Despite its success, kNN retrieval at each timestep leads to substantial time overhead. To address this issue, dominant studies resort to kNN-MT with adaptive retrieval (kNN-MT-AR), which dynamically estimates 𝜆 and skips kNN retrieval if 𝜆 is less than a fixed threshold. Unfortunately, kNN-MT-AR does not yield satisfactory results. In this paper, we first conduct a preliminary study to reveal two key limitations of kNN-MT-AR: 1) the optimization gap leads to inaccurate estimation of 𝜆 for determining kNN retrieval skipping, and 2) using a fixed threshold fails to accommodate the dynamic demands for kNN retrieval at different timesteps. To mitigate these limitations, we then propose kNN-MT with dynamic retrieval (kNN-MT-DR) that significantly extends vanilla kNN-MT in two aspects. Firstly, we equip kNN-MT with a MLP-based classifier for determining whether to skip kNN retrieval at each timestep. Particularly, we explore several carefully-designed scalar features to fully exert the potential of the classifier. Secondly, we propose a timestep-aware threshold adjustment method to dynamically generate the threshold, which further improves the efficiency of our model. Experimental results on the widely-used datasets demonstrate the effectiveness and generality of our model.
This work studies mitigating fact-conflicting hallucinations for large language model (LLM) at inference time.Particularly, we propose a self-endorsement framework that leverages the fine-grained fact-level comparisons across multiple sampled responses.Compared with prior ensemble methods (e.g., self-consistency) that perform response-level selection, our approach can better alleviate hallucinations for knowledge-intensive tasks.Our approach can broadly benefit smaller and open-source LLMs as it mainly conducts simple content-based comparisons.Experiments on Biographies show that our method can effectively improve the factuality of generations with simple and intuitive prompts across different scales of LLMs.Besides, comprehensive analyses on TriviaQA and GSM8K demonstrate the potential of self-endorsement for broader application.
Traditional non-simultaneous Sign Language Translation (SLT) methods, while effective for pre-recorded videos, face challenges in real-time scenarios due to inherent inference delays. The emerging field of simultaneous SLT aims to address this issue by progressively translating incrementally received sign video. However, the sole existing work in simultaneous SLT adopts a fixed gloss-based policy, which suffer from limitations in boundary prediction and contextual comprehension. In this paper, we delve deeper into this area and propose an adaptive policy for simultaneous SLT. Our approach introduces the concept of “confident translation length”, denoting maximum accurate translation achievable from current input. An estimator measures this length for streaming sign video, enabling the model to make informed decisions on whether to wait for more input or proceed with translation. To train the estimator, we construct a training data of confident translation length based on the longest common prefix between translations of partial and complete inputs. Furthermore, we incorporate adaptive training, utilizing pseudo prefix pairs, to refine the offline translation model for optimal performance in simultaneous scenarios. Experimental results on PHOENIX2014T and CSL-Daily demonstrate the superiority of our adaptive policy over existing methods, particularly excelling in situations requiring extremely low latency.
In an emotional conversation, emotions are causally transmitted among communication participants, constituting a fundamental conversational feature that can facilitate the comprehension of intricate changes in emotional states during the conversation and contribute to neutralizing emotional semantic bias in utterance caused by the absence of modality information. Therefore, emotional transition (ET) plays a crucial role in the task of Emotion Recognition in Conversation (ERC) that has not received sufficient attention in current research. In light of this, an Emotional Transition-based Emotion Recognizer (EmoTrans) is proposed in this paper. Specifically, we concatenate the most recent utterances with their corresponding speakers to construct the model input, known as samples, each with several placeholders to implicitly express the emotions of contextual utterances. Based on these placeholders, two components are developed to make the model sensitive to emotions and effectively capture the ET features in the sample. Furthermore, an ET-based Contrastive Learning (CL) is developed to compact the representation space, making the model achieve more robust sample representations. We conducted exhaustive experiments on four widely used datasets and obtained competitive experimental results, especially, new state-of-the-art results obtained on MELD and IEMOCAP, demonstrating the superiority of EmoTrans.
Electronic health records (EHRs) serve as a digital repository storing comprehensive medical information about patients. Representation learning for EHRs plays a crucial role in healthcare applications. In this paper, we propose a Multimodal Heterogeneous Graph-enhanced Representation Learning, denoted as MHGRL, aimed at learning effective EHR representations. To address the challenge posed by data insufficiency of EHRs, MHGRL utilizes a multimodal heterogeneous graph to model an EHR. Specifically, we construct a heterogeneous graph for each EHR and enrich it by incorporating multimodal information with medical ontology and textual notes. With the integration of pre-trained model, graph neural network, and attention mechanism, MHGRL effectively incorporates both node attributes and structural information across a multimodal heterogeneous graph. Moreover, we employ contrastive learning to ensure the consistency of representations for similar EHRs and improve the model robustness. The experimental results show that MHGRL outperforms all baselines on two real clinical datasets in downstream tasks, including EHR clustering and disease prediction. The code is available at https://github.com/emmali808/MHGRL.
Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model’s ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.
The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.
Conventional knowledge distillation(KD) approaches are commonly employed to compress neural machine translation(NMT) models. However, they only obtain one lightweight student each time. Consequently, we have to conduct KD multiple times when different students are required at the same time, which could be resource-intensive. Additionally, these students are individually optimized, and thus lack interactions with each other, leading to their potential not being fully exerted. In this work, we propose a novel All-In-One Knowledge Distillation(AIO-KD) framework for NMT, which generates multiple satisfactory students at once. Under AIO-KD, we first randomly extract fewer-layer subnetworks from the teacher as the sample students. Then, we jointly optimize the teacher and these students, where the students simultaneously learn the knowledge from the teacher and interact with other students via mutual learning. When utilized, we re-extract the candidate students, satisfying the specifications of various devices. Particularly, we adopt carefully-designed strategies for AIO-KD: 1) we dynamically detach gradients to prevent poorly-performed students from negatively affecting the teacher during the knowledge transfer, which could subsequently impact other students; 2) we design a two-stage mutual learning strategy, which alleviates the negative impacts of poorly-performed students on the early-stage student interactions. Extensive experiments and in-depth analyses on three benchmarks demonstrate the effectiveness and eco-friendliness of AIO-KD. Our source code is available at https://github.com/DeepLearnXMU/AIO-KD.
Few-shot relation extraction (FSRE) aims to train a model that can deal with new relations using only a few labeled examples. Most existing studies employ Prototypical Networks for FSRE, which usually overfits the relation classes in the training set and cannot generalize well to unseen relations. By investigating the class separation of an FSRE model, we find that model upper layers are prone to learn relation-specific knowledge. Therefore, in this paper, we propose a HyperNetwork-based Decoupling approach to improve the generalization of FSRE models. Specifically, our model consists of an encoder, a network generator (for producing relation classifiers) and the produced-then-finetuned classifiers for every N-way-K-shot episode. Meanwhile, we design a two-step training framework along with a class-agnostic aligner, in which the generated classifiers focus on acquiring relation-specific knowledge and the encoder is encouraged to learn more general relation knowledge. In this way, the roles of upper and lower layers in an FSRE model are explicitly decoupled, thus enhancing its generalizing capability during testing. Experiments on two public datasets demonstrate the effectiveness of our method.
As commonly-used methods for debiasing natural language understanding (NLU) models, dataset refinement approaches heavily rely on manual data analysis, and thus maybe unable to cover all the potential biased features. In this paper, we propose IBADR, an Iterative Bias-Aware Dataset Refinement framework, which debiases NLU models without predefining biased features. We maintain an iteratively expanded sample pool. Specifically, at each iteration, we first train a shallow model to quantify the bias degree of samples in the pool. Then, we pair each sample with a bias indicator representing its bias degree, and use these extended samples to train a sample generator. In this way, this generator can effectively learn the correspondence relationship between bias indicators and samples. Furthermore, we employ the generator to produce pseudo samples with fewer biased features by feeding specific bias indicators. Finally, we incorporate the generated pseudo samples into the pool. Experimental results and in-depth analyses on two NLU tasks show that IBADR not only significantly outperforms existing dataset refinement approaches, achieving SOTA, but also is compatible with model-centric methods.
A persistent goal of multilingual neural machine translation (MNMT) is to continually adapt the model to support new language pairs or improve some current language pairs without accessing the previous training data. To achieve this, the existing methods primarily focus on preventing catastrophic forgetting by making compromises between the original and new language pairs, leading to sub-optimal performance on both translation tasks. To mitigate this problem, we propose a dual importance-based model division method to divide the model parameters into two parts and separately model the translation of the original and new tasks. Specifically, we first remove the parameters that are negligible to the original tasks but essential to the new tasks to obtain a pruned model, which is responsible for the original translation tasks. Then we expand the pruned model with external parameters and fine-tune the newly added parameters with new training data. The whole fine-tuned model will be used for the new translation tasks. Experimental results show that our method can efficiently adapt the original model to various new translation tasks while retaining the performance of the original tasks. Further analyses demonstrate that our method consistently outperforms several strong baselines under different incremental translation scenarios.
We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.
This system description paper introduces the systems submitted by Xiaomi AI Lab to the three tracks of the IWSLT 2023 Evaluation Campaign, namely the offline speech translation (Offline-ST) track, the offline speech-to-speech translation (Offline-S2ST) track, and the simultaneous speech translation (Simul-ST) track. All our submissions for these three tracks only involve the English-Chinese language direction. Our English-Chinese speech translation systems are constructed using large-scale pre-trained models as the foundation. Specifically, we fine-tune these models’ corresponding components for various downstream speech translation tasks. Moreover, we implement several popular techniques, such as data filtering, data augmentation, speech segmentation, and model ensemble, to improve the system’s overall performance. Extensive experiments show that our systems achieve a significant improvement over the strong baseline systems in terms of the automatic evaluation metric.
Recently, the text-to-table generation task has attracted increasing attention due to its wide applications. In this aspect, the dominant model formalizes this task as a sequence-to-sequence generation task and serializes each table into a token sequence during training by concatenating all rows in a top-down order. However, it suffers from two serious defects: 1) the predefined order introduces a wrong bias during training, which highly penalizes shifts in the order between rows; 2) the error propagation problem becomes serious when the model outputs a long token sequence. In this paper, we first conduct a preliminary study to demonstrate the generation of most rows is order-insensitive. Furthermore, we propose a novel sequence-to-sequence&set text-to-table generation model. Specifically, in addition to a text encoder encoding the input text, our model is equipped with a table header generator to first output a table header, i.e., the first row of the table, in the manner of sequence generation. Then we use a table body generator with learnable row embeddings and column embeddings to generate a set of table body rows in parallel. Particularly, to deal with the issue that there is no correspondence between each generated table body row and target during training, we propose a target assignment strategy based on the bipartite matching between the first cells of generated table body rows and targets. Experiment results show that our model significantly surpasses the baselines, achieving state-of-the-art performance on commonly-used datasets.
We present a large-scale video subtitle translation dataset, *BigVideo*, to facilitate the study of multi-modality machine translation. Compared with the widely used *How2* and *VaTeX* datasets, *BigVideo* is more than 10 times larger, consisting of 4.5 million sentence pairs and 9,981 hours of videos. We also introduce two deliberately designed test sets to verify the necessity of visual information: *Ambiguous* with the presence of ambiguous words, and *Unambiguous* in which the text context is self-contained for translation. To better model the common semantics shared across texts and videos, we introduce a contrastive learning method in the cross-modal encoder. Extensive experiments on the *BigVideo* shows that: a) Visual information consistently improves the NMT model in terms of BLEU, BLEURT and COMET on both Ambiguous and Unambiguous test sets. b) Visual information helps disambiguation, compared to the strong text baseline on terminology-targeted scores and human evaluation.
Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with strong zero-shot capability.
In real-world systems, scaling has been critical for improving the translation quality in autoregressive translation (AT), which however has not been well studied for non-autoregressive translation (NAT). In this work, we bridge the gap by systematically studying the impact of scaling on NAT behaviors. Extensive experiments on six WMT benchmarks over two advanced NAT models show that scaling can alleviate the commonly-cited weaknesses of NAT models, resulting in better translation performance. To reduce the side-effect of scaling on decoding speed, we empirically investigate the impact of NAT encoder and decoder on the translation performance. Experimental results on the large-scale WMT20 En-De show that the asymmetric architecture (e.g. bigger encoder and smaller decoder) can achieve comparable performance with the scaling model, while maintaining the superiority of decoding speed with standard NAT models. To this end, we establish a new benchmark by validating scaled NAT models on the scaled dataset, which can be regarded as a strong baseline for future works. We release code and system outputs at https://github.com/DeepLearnXMU/Scaling4NAT.
Conversational query production is an emerging fundamental task for the dialogue system, where search queries are generated to explore the vast and continually updating knowledge from a search engine. To accelerate this line of research, previous studies have released several datasets with human-annotated search queries. However, the limited annotations still can not cover conversations of various domains. To solve this challenge, we propose a novel domain adaptation framework. It is inspired by a weakly supervised learning algorithm from previous work that guides a model using reinforcement learning with BM25 scores as feedback. Though effective, it is fragile facing noisy content on webpages from a commercial search engine and variance in conversations because of ignoring deep semantic information of dialogue contexts. Thus, we improve the algorithm by taking the advance of retrieval-augmented generation (RAG) and exploring several practical techniques such as knowledge distillation for stable training. We conduct experiments in multiple settings across different languages. Guided by the RAG model feedback, our model is more robust and performs significantly better especially in a more challenging setting over strong baselines.
Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework.
k-Nearest neighbor machine translation (kNN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains. By using an upstream NMT model to traverse the downstream training corpus, it is equipped with a datastore containing vectorized key-value pairs, which are retrieved during inference to benefit translation.However, there often exists a significant gap between upstream and downstream domains, which hurts the datastore retrieval and the final translation quality.To deal with this issue, we propose a novel approach to boost the datastore retrieval of kNN-MT by reconstructing the original datastore.Concretely, we design a reviser to revise the key representations, making them better fit for the downstream domain. The reviser is trained using the collected semantically-related key-queries pairs, and optimized by two proposed losses: one is the key-queries semantic distance ensuring each revised key representation is semantically related to its corresponding queries, and the other is an L2-norm loss encouraging revised key representations to effectively retain the knowledge learned by the upstream NMT model. Extensive experiments on domain adaptation tasks demonstrate that our method can effectively boost the datastore retrieval and translation quality of kNN-MT.Our code is available at https://github.com/DeepLearnXMU/Revised-knn-mt.
Most existing methods on robust neural machine translation (NMT) construct adversarial examples by injecting noise into authentic examples and indiscriminately exploit two types of examples. They require the model to translate both the authentic source sentence and its adversarial counterpart into the identical target sentence within the same training stage, which may be a suboptimal choice to achieve robust NMT. In this paper, we first conduct a preliminary study to confirm this claim and further propose an Iterative Scheduled Data-switch Training Framework to mitigate this problem. Specifically, we introduce two training stages, iteratively switching between authentic and adversarial examples. Compared with previous studies, our model focuses more on just one type of examples at each single stage, which can better exploit authentic and adversarial examples, and thus obtaining a better robust NMT model. Moreover, we introduce an improved curriculum learning method with a sampling strategy to better schedule the process of noise injection. Experimental results show that our model significantly surpasses several competitive baselines on four translation benchmarks. Our source code is available at https://github.com/DeepLearnXMU/RobustNMT-ISDST.
Grammatical Error Correction (GEC) aims to automatically detect and correct grammatical errors. In this aspect, dominant models are trained by one-iteration learning while performing multiple iterations of corrections during inference. Previous studies mainly focus on the data augmentation approach to combat the exposure bias, which suffers from two drawbacks. First, they simply mix additionally-constructed training instances and original ones to train models, which fails to help models be explicitly aware of the procedure of gradual corrections. Second, they ignore the interdependence between different types of corrections. In this paper, we propose a Type-Driven Multi-Turn Corrections approach for GEC. Using this approach, from each training instance, we additionally construct multiple training instances, each of which involves the correction of a specific type of errors. Then, we use these additionally-constructed training instances and the original one to train the model in turn. Experimental results and in-depth analysis show that our approach significantly benefits the model training. Particularly, our enhanced model achieves state-of-the-art single-model performance on English GEC benchmarks. We release our code at Github.
Diverse NMT aims at generating multiple diverse yet faithful translations given a source sentence. In this paper, we investigate a common shortcoming in existing diverse NMT studies: the model is usually trained with single reference, while expected to generate multiple candidate translations in inference. The discrepancy between training and inference enlarges the confidence variance and quality gap among candidate translations and thus hinders model performance. To deal with this defect, we propose a multi-candidate optimization framework for diverse NMT. Specifically, we define assessments to score the diversity and the quality of candidate translations during training, and optimize the diverse NMT model with two strategies based on reinforcement learning, namely hard constrained training and soft constrained training. We conduct experiments on NIST Chinese-English and WMT14 English-German translation tasks. The results illustrate that our framework is transparent to basic diverse NMT models, and universally makes better trade-off between diversity and quality. Our source codeis available at https://github.com/DeepLearnXMU/MultiCanOptim.
Continual Language Learning (CLL) in multilingual translation is inevitable when new languages are required to be translated. Due to the lack of unified and generalized benchmarks, the evaluation of existing methods is greatly influenced by experimental design which usually has a big gap from the industrial demands. In this work, we propose the first Continual Language Learning Evaluation benchmark CLLE in multilingual translation. CLLE consists of a Chinese-centric corpus — CN-25 and two CLL tasks — the close-distance language continual learning task and the language family continual learning task designed for real and disparate demands. Different from existing translation benchmarks, CLLE considers several restrictions for CLL, including domain distribution alignment, content overlap, language diversity, and the balance of corpus. Furthermore, we propose a novel framework COMETA based on Constrained Optimization and META-learning to alleviate catastrophic forgetting and dependency on history training data by using a meta-model to retain the important parameters for old languages. Our experiments prove that CLLE is a challenging CLL benchmark and that our proposed method is effective when compared with other strong baselines. Due to the construction of the corpus, the task designing and the evaluation method are independent of the centric language, we also construct and release the English-centric corpus EN-25 to facilitate academic research.
Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles).Recent work ignores features other than surface strings and suffers from the data hunger issue.We explore expressive features for this task to help achieve more effective data utilization.In particular, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions.We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation.Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. We will release our code upon paper acceptance.
Most existing pre-trained language representation models (PLMs) are sub-optimal in sentiment analysis tasks, as they capture the sentiment information from word-level while under-considering sentence-level information. In this paper, we propose SentiWSP, a novel Sentiment-aware pre-trained language model with combined Word-level and Sentence-level Pre-training tasks.The word level pre-training task detects replaced sentiment words, via a generator-discriminator framework, to enhance the PLM’s knowledge about sentiment words.The sentence level pre-training task further strengthens the discriminator via a contrastive learning framework, with similar sentences as negative samples, to encode sentiments in a sentence.Extensive experimental results show that SentiWSP achieves new state-of-the-art performance on various sentence-level and aspect-level sentiment classification benchmarks. We have made our code and model publicly available at https://github.com/XMUDM/SentiWSP.
k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years. Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model. However, the underlying retrieved noisy pairs will dramatically deteriorate the model performance. In this paper, we conduct a preliminary study and find that this problem results from not fully exploiting the prediction of the NMT model. To alleviate the impact of noise, we propose a confidence-enhanced kNN-MT model with robust training. Concretely, we introduce the NMT confidence to refine the modeling of two important components of kNN-MT: kNN distribution and the interpolation weight. Meanwhile we inject two types of perturbations into the retrieved pairs for robust training. Experimental results on four benchmark datasets demonstrate that our model not only achieves significant improvements over current kNN-MT models, but also exhibits better robustness. Our code is available at https://github.com/DeepLearnXMU/Robust-knn-mt.
Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of ∅ token (means “no corresponding keyphrase”). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive ∅ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the ∅ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.
Document-level relation extraction (RE) aims to extract the relations between entities from the input document that usually containing many difficultly-predicted entity pairs whose relations can only be predicted through relational inference. Existing methods usually directly predict the relations of all entity pairs of input document in a one-pass manner, ignoring the fact that predictions of some entity pairs heavily depend on the predicted results of other pairs. To deal with this issue, in this paper, we propose a novel document-level RE model with iterative inference. Our model is mainly composed of two modules: 1) a base module expected to provide preliminary relation predictions on entity pairs; 2) an inference module introduced to refine these preliminary predictions by iteratively dealing with difficultly-predicted entity pairs depending on other pairs in an easy-to-hard manner. Unlike previous methods which only consider feature information of entity pairs, our inference module is equipped with two Extended Cross Attention units, allowing it to exploit both feature information and previous predictions of entity pairs during relational inference. Furthermore, we adopt a two-stage strategy to train our model. At the first stage, we only train our base module. During the second stage, we train the whole model, where contrastive learning is introduced to enhance the training of inference module. Experimental results on three commonly-used datasets show that our model consistently outperforms other competitive baselines.
Multilingual neural machine translation aims to translate multiple language pairs in a single model and has shown great success thanks to the knowledge transfer across languages with the shared parameters. Despite promising, this share-all paradigm suffers from insufficient ability to capture language-specific features. Currently, the common practice is to insert or search language-specific networks to balance the shared and specific features. However, those two types of features are not sufficient enough to model the complex commonality and divergence across languages, such as the locally shared features among similar languages, which leads to sub-optimal transfer, especially in massively multilingual translation. In this paper, we propose a novel token-level feature mixing method that enables the model to capture different features and dynamically determine the feature sharing across languages. Based on the observation that the tokens in the multilingual model are usually shared by different languages, we we insert a feature mixing layer into each Transformer sublayer and model each token representation as a mix of different features, with a proportion indicating its feature preference. In this way, we can perform fine-grained feature sharing and achieve better multilingual transfer. Experimental results on multilingual datasets show that our method outperforms various strong baselines and can be extended to zero-shot translation. Further analyses reveal that our method can capture different linguistic features and bridge the representation gap across languages.
The goal of the cross-lingual summarization (CLS) is to convert a document in one language (e.g., English) to a summary in another one (e.g., Chinese). The CLS task is essentially the combination of machine translation (MT) and monolingual summarization (MS), and thus there exists the hierarchical relationship between MT&MS and CLS. Existing studies on CLS mainly focus on utilizing pipeline methods or jointly training an end-to-end model through an auxiliary MT or MS objective. However, it is very challenging for the model to directly conduct CLS as it requires both the abilities to translate and summarize. To address this issue, we propose a hierarchical model for the CLS task, based on the conditional variational auto-encoder. The hierarchical model contains two kinds of latent variables at the local and global levels, respectively. At the local level, there are two latent variables, one for translation and the other for summarization. As for the global level, there is another latent variable for cross-lingual summarization conditioned on the two local-level variables. Experiments on two language directions (English-Chinese) verify the effectiveness and superiority of the proposed approach. In addition, we show that our model is able to generate better cross-lingual summaries than comparison models in the few-shot setting.
Most dominant neural machine translation (NMT) models are restricted to make predictions only according to the local context of preceding words in a left-to-right manner. Although many previous studies try to incorporate global information into NMT models, there still exist limitations on how to effectively exploit bidirectional global context. In this paper, we propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for NMT, where the NMT model is jointly trained with an auxiliary conditional masked language model (CMLM). The training consists of two stages: (1) multi-task joint training; (2) confidence based knowledge distillation. At the first stage, by sharing encoder parameters, the NMT model is additionally supervised by the signal from the CMLM decoder that contains bidirectional global contexts. Moreover, at the second stage, using the CMLM as teacher, we further pertinently incorporate bidirectional global context to the NMT model on its unconfidently-predicted target words via knowledge distillation. Experimental results show that our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets, namely WMT’14 English-to-German, WMT’19 Chinese-to-English and WMT’14 English-to-French, respectively.
In this paper, we focus on the problem of citing sentence generation, which entails generating a short text to capture the salient information in a cited paper and the connection between the citing and cited paper. We present BACO, a BAckground knowledge- and COntent-based framework for citing sentence generation, which considers two types of information: (1) background knowledge by leveraging structural information from a citation network; and (2) content, which represents in-depth information about what to cite and why to cite. First, a citation network is encoded to provide background knowledge. Second, we apply salience estimation to identify what to cite by estimating the importance of sentences in the cited paper. During the decoding stage, both types of information are combined to facilitate the text generation, and then we conduct a joint training for the generator and citation function classification to make the model aware of why to cite. Our experimental results show that our framework outperforms comparative baselines.
A good translation should not only translate the original content semantically, but also incarnate personal traits of the original text. For a real-world neural machine translation (NMT) system, these user traits (e.g., topic preference, stylistic characteristics and expression habits) can be preserved in user behavior (e.g., historical inputs). However, current NMT systems marginally consider the user behavior due to: 1) the difficulty of modeling user portraits in zero-shot scenarios, and 2) the lack of user-behavior annotated parallel dataset. To fill this gap, we introduce a novel framework called user-driven NMT. Specifically, a cache-based module and a user-driven contrastive learning method are proposed to offer NMT the ability to capture potential user traits from their historical inputs under a zero-shot learning fashion. Furthermore, we contribute the first Chinese-English parallel corpus annotated with user behavior called UDT-Corpus. Experimental results confirm that the proposed user-driven NMT can generate user-specific translations.
Due to the great potential in facilitating software development, code generation has attracted increasing attention recently. Generally, dominant models are Seq2Tree models, which convert the input natural language description into a sequence of tree-construction actions corresponding to the pre-order traversal of an Abstract Syntax Tree (AST). However, such a traversal order may not be suitable for handling all multi-branch nodes. In this paper, we propose to equip the Seq2Tree model with a context-based Branch Selector, which is able to dynamically determine optimal expansion orders of branches for multi-branch nodes. Particularly, since the selection of expansion orders is a non-differentiable multi-step operation, we optimize the selector through reinforcement learning, and formulate the reward function as the difference of model losses obtained through different expansion orders. Experimental results and in-depth analysis on several commonly-used datasets demonstrate the effectiveness and generality of our approach. We have released our code at https://github.com/DeepLearnXMU/CG-RL.
A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.
Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering (Yin et al. 2019, 2021). Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model (Yin et al. 2019, 2021) on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT (Devlin et al. 2019) and FHDecoder (Yin et al. 2020), our model achieves state-of-the-art performance. Our code is available at https://github.com/DeepLearnXMU/IRSEG.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style, they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.
The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs. As a crucial defect, the current state-of-the-art models may mess up or even drop the core structural information of input graphs when generating outputs. We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information. In particular, we introduce two types of autoencoding losses, each individually focusing on different aspects (a.k.a. views) of input graphs. The losses are then back-propagated to better calibrate our model via multi-task training. Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline.
Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.
It is intuitive that semantic representations can be useful for machine translation, mainly because they can help in enforcing meaning preservation and handling data sparsity (many sentences correspond to one meaning) of machine translation models. On the other hand, little work has been done on leveraging semantics for neural machine translation (NMT). In this work, we study the usefulness of AMR (abstract meaning representation) on NMT. Experiments on a standard English-to-German dataset show that incorporating AMR as additional knowledge can significantly improve a strong attention-based sequence-to-sequence neural translation model.
Medical relation extraction discovers relations between entity mentions in text, such as research articles. For this task, dependency syntax has been recognized as a crucial source of features. Yet in the medical domain, 1-best parse trees suffer from relatively low accuracies, diminishing their usefulness. We investigate a method to alleviate this problem by utilizing dependency forests. Forests contain more than one possible decisions and therefore have higher recall but more noise compared with 1-best outputs. A graph neural network is used to represent the forests, automatically distinguishing the useful syntactic information from parsing noise. Results on two benchmarks show that our method outperforms the standard tree-based methods, giving the state-of-the-art results in the literature.
In this study, we first investigate a novel capsule network with dynamic routing for linear time Neural Machine Translation (NMT), referred as CapsNMT. CapsNMT uses an aggregation mechanism to map the source sentence into a matrix with pre-determined size, and then applys a deep LSTM network to decode the target sequence from the source representation. Unlike the previous work (CITATION) to store the source sentence with a passive and bottom-up way, the dynamic routing policy encodes the source sentence with an iterative process to decide the credit attribution between nodes from lower and higher layers. CapsNMT has two core properties: it runs in time that is linear in the length of the sequences and provides a more flexible way to aggregate the part-whole information of the source sentence. On WMT14 English-German task and a larger WMT14 English-French task, CapsNMT achieves comparable results with the Transformer system. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for sequence to sequence problems.
Previous studies on the domain adaptation for neural machine translation (NMT) mainly focus on the one-pass transferring out-of-domain translation knowledge to in-domain NMT model. In this paper, we argue that such a strategy fails to fully extract the domain-shared translation knowledge, and repeatedly utilizing corpora of different domains can lead to better distillation of domain-shared translation knowledge. To this end, we propose an iterative dual domain adaptation framework for NMT. Specifically, we first pretrain in-domain and out-of-domain NMT models using their own training corpora respectively, and then iteratively perform bidirectional translation knowledge transfer (from in-domain to out-of-domain and then vice versa) based on knowledge distillation until the in-domain NMT model convergences. Furthermore, we extend the proposed framework to the scenario of multiple out-of-domain training corpora, where the above-mentioned transfer is performed sequentially between the in-domain and each out-of-domain NMT models in the ascending order of their domain similarities. Empirical results on Chinese-English and English-German translation tasks demonstrate the effectiveness of our framework.
In aspect-level sentiment classification (ASC), it is prevalent to equip dominant neural models with attention mechanisms, for the sake of acquiring the importance of each context word on the given aspect. However, such a mechanism tends to excessively focus on a few frequent words with sentiment polarities, while ignoring infrequent ones. In this paper, we propose a progressive self-supervised attention learning approach for neural ASC models, which automatically mines useful attention supervision information from a training corpus to refine attention mechanisms. Specifically, we iteratively conduct sentiment predictions on all training instances. Particularly, at each iteration, the context word with the maximum attention weight is extracted as the one with active/misleading influence on the correct/incorrect prediction of every instance, and then the word itself is masked for subsequent iterations. Finally, we augment the conventional training objective with a regularization term, which enables ASC models to continue equally focusing on the extracted active context words while decreasing weights of those misleading ones. Experimental results on multiple datasets show that our proposed approach yields better attention mechanisms, leading to substantial improvements over the two state-of-the-art neural ASC models. Source code and trained models are available at https://github.com/DeepLearnXMU/PSSAttention.
With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github https://github.com/DeepLearnXMU/WDCNMT.
In this paper, we propose an additionsubtraction twin-gated recurrent network (ATR) to simplify neural machine translation. The recurrent units of ATR are heavily simplified to have the smallest number of weight matrices among units of all existing gated RNNs. With the simple addition and subtraction operation, we introduce a twin-gated mechanism to build input and forget gates which are highly correlated. Despite this simplification, the essential non-linearities and capability of modeling long-distance dependencies are preserved. Additionally, the proposed ATR is more transparent than LSTM/GRU due to the simplification. Forward self-attention can be easily established in ATR, which makes the proposed network interpretable. Experiments on WMT14 translation tasks demonstrate that ATR-based neural machine translation can yield competitive performance on English-German and English-French language pairs in terms of both translation quality and speed. Further experiments on NIST Chinese-English translation, natural language inference and Chinese word segmentation verify the generality and applicability of ATR on different natural language processing tasks.
With parallelizable attention networks, the neural Transformer is very fast to train. However, due to the auto-regressive architecture and self-attention in the decoder, the decoding procedure becomes slow. To alleviate this issue, we propose an average attention network as an alternative to the self-attention network in the decoder of the neural Transformer. The average attention network consists of two layers, with an average layer that models dependencies on previous positions and a gating layer that is stacked over the average layer to enhance the expressiveness of the proposed attention network. We apply this network on the decoder part of the neural Transformer to replace the original target-side self-attention model. With masking tricks and dynamic programming, our model enables the neural Transformer to decode sentences over four times faster than its original version with almost no loss in training time and translation performance. We conduct a series of experiments on WMT17 translation tasks, where on 6 different language pairs, we obtain robust and consistent speed-ups in decoding.
Neural machine translation with source-side attention have achieved remarkable performance. however, there has been little work exploring to attend to the target-side which can potentially enhance the memory capbility of NMT. We reformulate a Decoding History Enhanced Attention mechanism (DHEA) to render NMT model better at selecting both source-side and target-side information. DHA enables dynamic control of the ratios at which source and target contexts contribute to the generation of target words, offering a way to weakly induce structure relations among both source and target tokens. It also allows training errors to be directly back-propagated through short-cut connections and effectively alleviates the gradient vanishing problem. The empirical study on Chinese-English translation shows that our model with proper configuration can improve by 0:9 BLEU upon Transformer and the best reported results in the dataset. On WMT14 English-German task and a larger WMT14 English-French task, our model achieves comparable results with the state-of-the-art.
A great proportion of sequence-to-sequence (Seq2Seq) models for Neural Machine Translation (NMT) adopt Recurrent Neural Network (RNN) to generate translation word by word following a sequential order. As the studies of linguistics have proved that language is not linear word sequence but sequence of complex structure, translation at each step should be conditioned on the whole target-side context. To tackle the problem, we propose a new NMT model that decodes the sequence with the guidance of its structural prediction of the context of the target sequence. Our model generates translation based on the structural prediction of the target-side context so that the translation can be freed from the bind of sequential order. Experimental results demonstrate that our model is more competitive compared with the state-of-the-art methods, and the analysis reflects that our model is also robust to translating sentences of different lengths and it also reduces repetition with the instruction from the target-side context for decoding.
We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.
Parallel sentence representations are important for bilingual and cross-lingual tasks in natural language processing. In this paper, we explore a bilingual autoencoder approach to model parallel sentences. We extract sentence-level global descriptors (e.g. min, max) from word embeddings, and construct two monolingual autoencoders over these descriptors on the source and target language. In order to tightly connect the two autoencoders with bilingual correspondences, we force them to share the same decoding parameters and minimize a corpus-level semantic distance between the two languages. Being optimized towards a joint objective function of reconstruction and semantic errors, our bilingual antoencoder is able to learn continuous-valued latent representations for parallel sentences. Experiments on both intrinsic and extrinsic evaluations on statistical machine translation tasks show that our autoencoder achieves substantial improvements over the baselines.
Estimating similarities at different levels of linguistic units, such as words, sub-phrases and phrases, is helpful for measuring semantic similarity of an entire bilingual phrase. In this paper, we propose a convolution-enhanced bilingual recursive neural network (ConvBRNN), which not only exploits word alignments to guide the generation of phrase structures but also integrates multiple-level information of the generated phrase structures into bilingual semantic modeling. In order to accurately learn the semantic hierarchy of a bilingual phrase, we develop a recursive neural network to constrain the learned bilingual phrase structures to be consistent with word alignments. Upon the generated source and target phrase structures, we stack a convolutional neural network to integrate vector representations of linguistic units on the structures into bilingual phrase embeddings. After that, we fully incorporate information of different linguistic units into a bilinear semantic similarity model. We introduce two max-margin losses to train the ConvBRNN model: one for the phrase structure inference and the other for the semantic similarity model. Experiments on NIST Chinese-English translation tasks demonstrate the high quality of the generated bilingual phrase structures with respect to word alignments and the effectiveness of learned semantic similarities on machine translation.