Contextual information, including the sentences in the same document and in other documents of the dataset, plays a crucial role in improving the accuracy of document-level ASR Error Correction (AEC), while most previous works ignore this. In this paper, we propose a context-aware method that utilizes a k-Nearest Neighbors (kNN) approach to enhance the AEC model by retrieving a datastore containing contextual information. We conduct experiments on two English and two Chinese datasets, and the results demonstrate that our proposed model can effectively utilize contextual information to improve document-level AEC. Furthermore, the context information from the whole dataset provides even better results.
Chinese Spelling Check (CSC) aims to detect and correct error tokens in Chinese contexts, which has a wide range of applications. However, it is confronted with the challenges of insufficient annotated data and the issue that previous methods may actually not fully leverage the existing datasets. In this paper, we introduce our plug-and-play retrieval method with error-robust information for Chinese Spelling Check (RERIC), which can be directly applied to existing CSC models. The datastore for retrieval is built completely based on the training data, with elaborate designs according to the characteristics of CSC. Specifically, we employ multimodal representations that fuse phonetic, morphologic, and contextual information in the calculation of query and key during retrieval to enhance robustness against potential errors. Furthermore, in order to better judge the retrieved candidates, the n-gram surrounding the token to be checked is regarded as the value and utilized for specific reranking. The experiment results on the SIGHAN benchmarks demonstrate that our proposed method achieves substantial improvements over existing work.
Scientific paper summarization is always challenging in Natural Language Processing (NLP) since it is hard to collect summaries from such long and complicated text. We observe that previous works tend to extract summaries from the head of the paper, resulting in information incompleteness. In this work, we present SAPGraph to utilize paper structure for solving this problem. SAPGraph is a scientific paper extractive summarization framework based on a structure-aware heterogeneous graph, which models the document into a graph with three kinds of nodes and edges based on structure information of facets and knowledge. Additionally, we provide a large-scale dataset of COVID-19-related papers, CORD-SUM. Experiments on CORD-SUM and ArXiv datasets show that SAPGraph generates more comprehensive and valuable summaries compared to previous works.