Jainendra Shukla


2024

pdf
Vers une pédagogie inclusive : une classification multimodale des illustrations de manuels scolaires pour des environnements d’apprentissage adaptés
Saumya Yadav | Élise Lincker | Caroline Huron | Stéphanie Martin | Camille Guinaudeau | Shin’Ichi Satoh | Jainendra Shukla
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Afin de favoriser une éducation inclusive, des systèmes automatiques capables d’adapter les manuels scolaires pour les rendre accessibles aux enfants en situation de handicap sont nécessaires. Dans ce contexte, nous proposons de classifier les images associées aux exercices selon trois classes (Essentielle, Informative et Inutile) afin de décider de leur intégration ou non dans la version accessible du manuel pour les enfants malvoyants. Sur un ensemble de données composé de 652 paires (texte, image), nous utilisons des approches monomodales et multimodales à l’état de l’art et montrons que les approches fondées sur le texte obtiennent les meilleurs résultats. Le modèle CamemBERT atteint ainsi une exactitude de 85,25% lorsqu’il est combiné avec des stratégies de gestion de données déséquilibrées. Pour mieux comprendre la relation entre le texte et l’image dans les exercices des manuels, nous effectuons également une analyse qualitative des résultats obtenus avec et sans la modalité image et utilisons la méthode LIME pour expliquer la décision de nos modèles.