Jaehong Kim


2024

pdf
How Do Moral Emotions Shape Political Participation? A Cross-Cultural Analysis of Online Petitions Using Language Models
Jaehong Kim | Chaeyoon Jeong | Seongchan Park | Meeyoung Cha | Wonjae Lee
Findings of the Association for Computational Linguistics ACL 2024

Understanding the interplay between emotions in language and user behaviors is critical. We study how moral emotions shape the political participation of users based on cross-cultural online petition data. To quantify moral emotions, we employ a context-aware NLP model that is designed to capture the subtle nuances of emotions across cultures. For model training, we construct and share a moral emotion dataset comprising nearly 50,000 petition sentences in Korean and English each, along with emotion labels annotated by a fine-tuned LLM. We examine two distinct types of user participation: general support (i.e., registered signatures of petitions) and active support (i.e., sharing petitions on social media). We discover that moral emotions like other-suffering increase both forms of participation and help petitions go viral, while self-conscious have the opposite effect. The most prominent moral emotion, other-condemning, led to polarizing responses among the audience. In contrast, other-praising was perceived differently by culture; it led to a rise in active support in Korea but a decline in the UK. Our findings suggest that both moral emotions embedded in language and cultural perceptions are critical to shaping the public’s political discourse.

pdf
Data Driven Approach for Mathematical Problem Solving
Byungju Kim | Wonseok Lee | Jaehong Kim | Jungbin Im
Proceedings of the 2nd Workshop on Mathematical Natural Language Processing @ LREC-COLING 2024

In this paper, we investigate and introduce a novel Llama-2 based model, fine-tuned with an original dataset designed to mirror real-world mathematical challenges. The dataset was collected through a question-answering platform, incorporating solutions generated by both rule-based solver and question answering, to cover a broad spectrum of mathematical concepts and problem-solving techniques. Experimental results demonstrate significant performance improvements when the models are fine-tuned with our dataset. The results suggest that the integration of contextually rich and diverse problem sets into the training substantially enhances the problem-solving capability of language models across various mathematical domains. This study showcases the critical role of curated educational content in advancing AI research.