Itzik Malkiel


2024

pdf
InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers
Yakir Yehuda | Itzik Malkiel | Oren Barkan | Jonathan Weill | Royi Ronen | Noam Koenigstein
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the many advances of Large Language Models (LLMs) and their unprecedented rapid evolution, their impact and integration into every facet of our daily lives is limited due to various reasons. One critical factor hindering their widespread adoption is the occurrence of hallucinations, where LLMs invent answers that sound realistic, yet drift away from factual truth. In this paper, we present a novel method for detecting hallucinations in large language models, which tackles a critical issue in the adoption of these models in various real-world scenarios. Through extensive evaluations across multiple datasets and LLMs, including Llama-2, we study the hallucination levels of various recent LLMs and demonstrate the effectiveness of our method to automatically detect them. Notably, we observe up to 87% hallucinations for Llama-2 in a specific experiment, where our method achieves a Balanced Accuracy of 81%, all without relying on external knowledge.

2021

pdf
Maximal Multiverse Learning for Promoting Cross-Task Generalization of Fine-Tuned Language Models
Itzik Malkiel | Lior Wolf
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Language modeling with BERT consists of two phases of (i) unsupervised pre-training on unlabeled text, and (ii) fine-tuning for a specific supervised task. We present a method that leverages the second phase to its fullest, by applying an extensive number of parallel classifier heads, which are enforced to be orthogonal, while adaptively eliminating the weaker heads during training. We conduct an extensive inter- and intra-dataset evaluation, showing that our method improves the generalization ability of BERT, sometimes leading to a +9% gain in accuracy. These results highlight the importance of a proper fine-tuning procedure, especially for relatively smaller-sized datasets. Our code is attached as supplementary.

pdf
Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference
Dvir Ginzburg | Itzik Malkiel | Oren Barkan | Avi Caciularu | Noam Koenigstein
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Caption Enriched Samples for Improving Hateful Memes Detection
Efrat Blaier | Itzik Malkiel | Lior Wolf
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The recently introduced hateful meme challenge demonstrates the difficulty of determining whether a meme is hateful or not. Specifically, both unimodal language models and multimodal vision-language models cannot reach the human level of performance. Motivated by the need to model the contrast between the image content and the overlayed text, we suggest applying an off-the-shelf image captioning tool in order to capture the first. We demonstrate that the incorporation of such automatic captions during fine-tuning improves the results for various unimodal and multimodal models. Moreover, in the unimodal case, continuing the pre-training of language models on augmented and original caption pairs, is highly beneficial to the classification accuracy.

pdf
MTAdam: Automatic Balancing of Multiple Training Loss Terms
Itzik Malkiel | Lior Wolf
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

When training neural models, it is common to combine multiple loss terms. The balancing of these terms requires considerable human effort and is computationally demanding. Moreover, the optimal trade-off between the loss terms can change as training progresses, e.g., for adversarial terms. In this work, we generalize the Adam optimization algorithm to handle multiple loss terms. The guiding principle is that for every layer, the gradient magnitude of the terms should be balanced. To this end, the Multi-Term Adam (MTAdam) computes the derivative of each loss term separately, infers the first and second moments per parameter and loss term, and calculates a first moment for the magnitude per layer of the gradients arising from each loss. This magnitude is used to continuously balance the gradients across all layers, in a manner that both varies from one layer to the next and dynamically changes over time. Our results show that training with the new method leads to fast recovery from suboptimal initial loss weighting and to training outcomes that match or improve conventional training with the prescribed hyperparameters of each method.

2020

pdf
RecoBERT: A Catalog Language Model for Text-Based Recommendations
Itzik Malkiel | Oren Barkan | Avi Caciularu | Noam Razin | Ori Katz | Noam Koenigstein
Findings of the Association for Computational Linguistics: EMNLP 2020

Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that don’t require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.