This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The expanding financial markets of the Arab world require sophisticated Arabic NLP tools. To address this need within the banking domain, the Arabic Financial NLP (AraFinNLP) shared task proposes two subtasks: (i) Multi-dialect Intent Detection and (ii) Cross-dialect Translation and Intent Preservation. This shared task uses the updated ArBanking77 dataset, which includes about 39k parallel queries in MSA and four dialects. Each query is labeled with one or more of a common 77 intents in the banking domain. These resources aim to foster the development of robust financial Arabic NLP, particularly in the areas of machine translation and banking chat-bots.A total of 45 unique teams registered for this shared task, with 11 of them actively participated in the test phase. Specifically, 11 teams participated in Subtask 1, while only 1 team participated in Subtask 2. The winning team of Subtask 1 achieved F1 score of 0.8773, and the only team submitted in Subtask 2 achieved a 1.667 BLEU score.
Named Entity Recognition (NER) is a fundamental task in Natural Language Processing (NLP) that focuses on extracting entities such as names of people, organizations, locations, and dates from text. Despite significant advancements due to deep learning and transformer architectures like BERT, NER still faces challenges, particularly in low-resource languages like Arabic. This paper presents a BERT-based NER system that utilizes a two-channel parallel hybrid neural network with an attention mechanism specifically designed for the NER Shared Task 2024. In the competition, our approach ranked second by scoring 90.13% in micro-F1 on the test set. The results demonstrate the effectiveness of combining advanced neural network architectures with contextualized word embeddings in improving NER performance for Arabic.
This paper introduces our participating system to the Explainable Detection of Online Sexism (EDOS) SemEval-2023 - Task 10: Explainable Detection of Online Sexism. The EDOS shared task covers three hierarchical sub-tasks for sexism detection, coarse-grained and fine-grained categorization. We have investigated both single-task and multi-task learning based on RoBERTa transformer-based language models. For improving the results, we have performed further pre-training of RoBERTa on the provided unlabeled data. Besides, we have employed a small sample of the unlabeled data for semi-supervised learning using the minimum class-confusion loss. Our system has achieved macro F1 scores of 82.25\%, 67.35\%, and 49.8\% on Tasks A, B, and C, respectively.
This paper presents our proposed method for english documents genre classification in the context of SemEval 2023 task 3, subtask 1. Our method use ensemble technique to combine four distinct models predictions: Longformer, RoBERTa, GCN, and a sentences number-based model. Each model is optimized on simple objectives and easy to grasp. We provide snippets of code that define each model to make the reading experience better. Our method ranked 12th in documents genre classification for english texts.
This paper presents our submitted system to AfriSenti SemEval-2023 Task 12: Sentiment Analysis for African Languages. The AfriSenti consists of three different tasks, covering monolingual, multilingual, and zero-shot sentiment analysis scenarios for African languages. To improve model generalization, we have explored the following steps: 1) further pre-training of the AfroXLM Pre-trained Language Model (PLM), 2) combining AfroXLM and MARBERT PLMs using a residual layer, and 3) studying the impact of metric learning and two out-of-distribution generalization training objectives. The overall evaluation results show that our system has achieved promising results on several sub-tasks of Task A. For Tasks B and C, our system is ranked among the top six participating systems.
In this paper, we introduce our participating system to the ArAIEval Shared Task, addressing both the detection of persuasion techniques and disinformation tasks. Our proposed system employs a pre-trained transformer-based language model for Arabic, alongside a classifier. We have assessed the performance of three Arabic Pre-trained Language Models (PLMs) for sentence encoding. Additionally, to enhance our model’s performance, we have explored various training objectives, including Cross-Entropy loss, regularized Mixup loss, asymmetric multi-label loss, and Focal Tversky loss. On the official test set, our system has achieved micro-F1 scores of 0.7515, 0.5666, 0.904, and 0.8333 for Sub-Task 1A, Sub-Task 1B, Sub-Task 2A, and Sub-Task 2B, respectively. Furthermore, our system has secured the 4th, 1st, 3rd, and 2nd positions, respectively, among all participating systems in sub-tasks 1A, 1B, 2A, and 2B of the ArAIEval shared task.
In this paper, we present our submitted system for the WojoodNER Shared Task, addressing both flat and nested Arabic Named Entity Recognition (NER). Our system is based on a BERT-based multi-task learning model that leverages the existing Arabic Pretrained Language Models (PLMs) to encode the input sentences. To enhance the performance of our model, we have employed a multi-task loss variance penalty and combined several training objectives, including the Cross-Entropy loss, the Dice loss, the Tversky loss, and the Focal loss. Besides, we have studied the performance of three existing Arabic PLMs for sentence encoding. On the official test set, our system has obtained a micro-F1 score of 0.9113 and 0.9303 for Flat (Sub-Task 1) and Nested (Sub-Task 2) NER, respectively. It has been ranked in the 6th and the 2nd positions among all participating systems in Sub-Task 1 and Sub-Task 2, respectively.
Sarcasm is a form of figurative language where the intended meaning of a sentence differs from its literal meaning. This poses a serious challenge to several Natural Language Processing (NLP) applications such as Sentiment Analysis, Opinion Mining, and Author Profiling. In this paper, we present our participating system to the intended sarcasm detection task in English and Arabic languages. Our system consists of three deep learning-based models leveraging two existing pre-trained language models for Arabic and English. We have participated in all sub-tasks. Our official submissions achieve the best performance on sub-task A for Arabic language and rank second in sub-task B. For sub-task C, our system is ranked 7th and 11th on Arabic and English datasets, respectively.
Building real-world complex Named Entity Recognition (NER) systems is a challenging task. This is due to the complexity and ambiguity of named entities that appear in various contexts such as short input sentences, emerging entities, and complex entities. Besides, real-world queries are mostly malformed, as they can be code-mixed or multilingual, among other scenarios. In this paper, we introduce our submitted system to the Multilingual Complex Named Entity Recognition (MultiCoNER) shared task. We approach the complex NER for multilingual and code-mixed queries, by relying on the contextualized representation provided by the multilingual Transformer XLM-RoBERTa. In addition to the CRF-based token classification layer, we incorporate a span classification loss to recognize named entities spans. Furthermore, we use a self-training mechanism to generate weakly-annotated data from a large unlabeled dataset. Our proposed system is ranked 6th and 8th in the multilingual and code-mixed MultiCoNER’s tracks respectively.
Dialect and standard language identification are crucial tasks for many Arabic natural language processing applications. In this paper, we present our deep learning-based system, submitted to the second NADI shared task for country-level and province-level identification of Modern Standard Arabic (MSA) and Dialectal Arabic (DA). The system is based on an end-to-end deep Multi-Task Learning (MTL) model to tackle both country-level and province-level MSA/DA identification. The latter MTL model consists of a shared Bidirectional Encoder Representation Transformers (BERT) encoder, two task-specific attention layers, and two classifiers. Our key idea is to leverage both the task-discriminative and the inter-task shared features for country and province MSA/DA identification. The obtained results show that our MTL model outperforms single-task models on most subtasks.
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep Multi-Task Learning (MTL) model, allowing knowledge interaction between the two tasks. Our MTL model’s architecture consists of a Bidirectional Encoder Representation from Transformers (BERT) model, a multi-task attention interaction module, and two task classifiers. The overall obtained results show that our proposed model outperforms its single-task and MTL counterparts on both sarcasm and sentiment detection subtasks.
Lexical Complexity Prediction (LCP) involves assigning a difficulty score to a particular word or expression, in a text intended for a target audience. In this paper, we introduce a new deep learning-based system for this challenging task. The proposed system consists of a deep learning model, based on pre-trained transformer encoder, for word and Multi-Word Expression (MWE) complexity prediction. First, on top of the encoder’s contextualized word embedding, our model employs an attention layer on the input context and the complex word or MWE. Then, the attention output is concatenated with the pooled output of the encoder and passed to a regression module. We investigate both single-task and joint training on both Sub-Tasks data using multiple pre-trained transformer-based encoders. The obtained results are very promising and show the effectiveness of fine-tuning pre-trained transformers for LCP task.
Humor detection has become a topic of interest for several research teams, especially those involved in socio-psychological studies, with the aim to detect the humor and the temper of a targeted population (e.g. a community, a city, a country, the employees of a given company). Most of the existing studies have formulated the humor detection problem as a binary classification task, whereas it revolves around learning the sense of humor by evaluating its different degrees. In this paper, we propose an end-to-end deep Multi-Task Learning (MTL) model to detect and rate humor and offense. It consists of a pre-trained transformer encoder and task-specific attention layers. The model is trained using MTL uncertainty loss weighting to adaptively combine all sub-tasks objective functions. Our MTL model tackles all sub-tasks of the SemEval-2021 Task-7 in one end-to-end deep learning system and shows very promising results.
Finetuning deep pre-trained language models has shown state-of-the-art performances on a wide range of Natural Language Processing (NLP) applications. Nevertheless, their generalization performance drops under domain shift. In the case of Arabic language, diglossia makes building and annotating corpora for each dialect and/or domain a more challenging task. Unsupervised Domain Adaptation tackles this issue by transferring the learned knowledge from labeled source domain data to unlabeled target domain data. In this paper, we propose a new unsupervised domain adaptation method for Arabic cross-domain and cross-dialect sentiment analysis from Contextualized Word Embedding. Several experiments are performed adopting the coarse-grained and the fine-grained taxonomies of Arabic dialects. The obtained results show that our method yields very promising results and outperforms several domain adaptation methods for most of the evaluated datasets. On average, our method increases the performance by an improvement rate of 20.8% over the zero-shot transfer learning from BERT.
Around the Arab world, different Arabic dialects are spoken by more than 300M persons, and are increasingly popular in social media texts. However, Arabic dialects are considered to be low-resource languages, limiting the development of machine-learning based systems for these dialects. In this paper, we investigate the Arabic dialect identification task, from two perspectives: country-level dialect identification from 21 Arab countries, and province-level dialect identification from 100 provinces. We introduce an unified pipeline of state-of-the-art models, that can handle the two subtasks. Our experimental studies applied to the NADI shared task, show promising results both at the country-level (F1-score of 25.99%) and the province-level (F1-score of 6.39%), and thus allow us to be ranked 2nd for the country-level subtask, and 1st in the province-level subtask.