Hongfei Xue


2024

pdf
Breakthrough from Nuance and Inconsistency: Enhancing Multimodal Sarcasm Detection with Context-Aware Self-Attention Fusion and Word Weight Calculation.
Hongfei Xue | Linyan Xu | Yu Tong | Rui Li | Jiali Lin | Dazhi Jiang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal sarcasm detection has received considerable attention due to its unique role in social networks. Existing methods often rely on feature concatenation to fuse different modalities or model the inconsistencies among modalities. However, sarcasm is often embodied in local and momentary nuances in a subtle way, which causes difficulty for sarcasm detection. To effectively incorporate these nuances, this paper presents Context-Aware Self-Attention Fusion (CAAF) to integrate local and momentary multimodal information into specific words. Furthermore, due to the instantaneous nature of sarcasm, the connotative meanings of words post-multimodal integration generally deviate from their denotative meanings. Therefore, Word Weight Calculation (WWC) is presented to compute the weight of specific words based on CAAF’s fusion nuances, illustrating the inconsistency between connotation and denotation. We evaluate our method on the MUStARD dataset, achieving an accuracy of 76.9 and an F1 score of 76.1, which surpasses the current state-of-the-art IWAN model by 1.7 and 1.6 respectively.