Heqing Ma


2024

pdf
SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations
Fanfan Wang | Heqing Ma | Rui Xia | Jianfei Yu | Erik Cambria
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

The ability to understand emotions is an essential component of human-like artificial intelligence, as emotions greatly influence human cognition, decision making, and social interactions. In addition to emotion recognition in conversations, the task of identifying the potential causes behind an individual’s emotional state in conversations, is of great importance in many application scenarios. We organize SemEval-2024 Task 3, named Multimodal Emotion Cause Analysis in Conversations, which aims at extracting all pairs of emotions and their corresponding causes from conversations. Under different modality settings, it consists of two subtasks: Textual Emotion-Cause Pair Extraction in Conversations (TECPE) and Multimodal Emotion-Cause Pair Extraction in Conversations (MECPE). The shared task has attracted 143 registrations and 216 successful submissions.In this paper, we introduce the task, dataset and evaluation settings, summarize the systems of the top teams, and discuss the findings of the participants.

pdf
A Joint Coreference-Aware Approach to Document-Level Target Sentiment Analysis
Hongjie Cai | Heqing Ma | Jianfei Yu | Rui Xia
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most existing work on aspect-based sentiment analysis (ABSA) focuses on the sentence level, while research at the document level has not received enough attention. Compared to sentence-level ABSA, the document-level ABSA is not only more practical but also requires holistic document-level understanding capabilities such as coreference resolution. To investigate the impact of coreference information on document-level ABSA, we conduct a three-stage research for the document-level target sentiment analysis (DTSA) task: 1) exploring the effectiveness of coreference information for the DTSA task; 2) reducing the reliance on manually annotated coreference information; 3) alleviating the evaluation bias caused by missing the coreference information of opinion targets. Specifically, we first manually annotate the coreferential opinion targets and propose a multi-task learning framework to jointly model the DTSA task and the coreference resolution task. Then we annotate the coreference information with ChatGPT for joint training. Finally, to address the issue of missing coreference targets, we modify the metrics from strict matching to a loose matching method based on the clusters of targets. The experimental results not only demonstrate the effectiveness of our framework but also reflect the feasibility of using ChatGPT-annotated coreferential entities and the applicability of the modified metrics. Our source code is publicly released at https://github.com/NUSTM/DTSA-Coref.