Hengzhu Tang
2020
Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph Network
Ruipeng Jia
|
Yanan Cao
|
Hengzhu Tang
|
Fang Fang
|
Cong Cao
|
Shi Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Sentence-level extractive text summarization is substantially a node classification task of network mining, adhering to the informative components and concise representations. There are lots of redundant phrases between extracted sentences, but it is difficult to model them exactly by the general supervised methods. Previous sentence encoders, especially BERT, specialize in modeling the relationship between source sentences. While, they have no ability to consider the overlaps of the target selected summary, and there are inherent dependencies among target labels of sentences. In this paper, we propose HAHSum (as shorthand for Hierarchical Attentive Heterogeneous Graph for Text Summarization), which well models different levels of information, including words and sentences, and spotlights redundancy dependencies between sentences. Our approach iteratively refines the sentence representations with redundancy-aware graph and delivers the label dependencies by message passing. Experiments on large scale benchmark corpus (CNN/DM, NYT, and NEWSROOM) demonstrate that HAHSum yields ground-breaking performance and outperforms previous extractive summarizers.
Document-level Relation Extraction with Dual-tier Heterogeneous Graph
Zhenyu Zhang
|
Bowen Yu
|
Xiaobo Shu
|
Tingwen Liu
|
Hengzhu Tang
|
Wang Yubin
|
Li Guo
Proceedings of the 28th International Conference on Computational Linguistics
Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart since it requires an adequate comprehension of the whole document and the multi-hop reasoning ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular, DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major advantage is that it is capable of not only capturing both the sequential and structural information of documents but also mixing them together to benefit for multi-hop reasoning and final decision-making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation strategy to accumulate information on DHG. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on two widely used datasets, and further analyses suggest that all the modules in our model are indispensable for document-level RE.