This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Neural language models have demonstrated impressive performance in various tasks but remain vulnerable to word-level adversarial attacks. Word-level adversarial attacks can be formulated as a combinatorial optimization problem, and thus, an attack method can be decomposed into search space and search method. Despite the significance of these two components, previous works inadequately distinguish them, which may lead to unfair comparisons and insufficient evaluations. In this paper, to address the inappropriate practices in previous works, we perform thorough ablation studies on the search space, illustrating the substantial influence of search space on attack efficiency, effectiveness, and imperceptibility. Based on the ablation study, we propose two standardized search spaces: the Search Space for ImPerceptibility (SSIP) and Search Space for EffecTiveness (SSET). The reevaluation of eight previous attack methods demonstrates the success of SSIP and SSET in achieving better trade-offs between efficiency, effectiveness, and imperceptibility in different scenarios, offering fair and comprehensive evaluations of previous attack methods and providing potential guidance for future works.
Neural language models are vulnerable to word-level adversarial text attacks, which generate adversarial examples by directly substituting discrete input words. Previous search methods for word-level attacks assume that the information in the important words is more influential on prediction than unimportant words. In this paper, motivated by this assumption, we propose a self-supervised regularization method for Similarizing the Influence of Words with Contrastive Learning (SIWCon) that encourages the model to learn sentence representations in which words of varying importance have a more uniform influence on prediction. Experiments show that SIWCon is compatible with various training methods and effectively improves model robustness against various unforeseen adversarial attacks. The effectiveness of SIWCon is also intuitively shown through qualitative analysis and visualization of the loss landscape, sentence representation, and changes in model confidence.
Storytelling’s captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces ‘intriguing twists’ in narratives by employing two novel techniques—Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen’s superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.
This paper presents a fine-grained test suite for the language pair German–English. The test suite is based on a number of linguistically motivated categories and phenomena and the semi-automatic evaluation is carried out with regular expressions. We describe the creation and implementation of the test suite in detail, providing a full list of all categories and phenomena. Furthermore, we present various exemplary applications of our test suite that have been implemented in the past years, like contributions to the Conference of Machine Translation, the usage of the test suite and MT outputs for quality estimation, and the expansion of the test suite to the language pair Portuguese–English. We describe how we tracked the development of the performance of various systems MT systems over the years with the help of the test suite and which categories and phenomena are prone to resulting in MT errors. For the first time, we also make a large part of our test suite publicly available to the research community.
Web debates play an important role in enabling broad participation of constituencies in social, political and economic decision-taking. However, it is challenging to organize, structure, and navigate a vast number of diverse argumentations and comments collected from many participants over a long time period. In this paper we demonstrate Common Round, a next generation platform for large-scale web debates, which provides functions for eliciting the semantic content and structures from the contributions of participants. In particular, Common Round applies language technologies for the extraction of semantic essence from textual input, aggregation of the formulated opinions and arguments. The platform also provides a cross-lingual access to debates using machine translation.