This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This paper introduces Mixat: a dataset of Emirati speech code-mixed with English. Mixat was developed to address the shortcomings of current speech recognition resources when applied to Emirati speech, and in particular, to bilignual Emirati speakers who often mix and switch between their local dialect and English. The data set consists of 15 hours of speech derived from two public podcasts featuring native Emirati speakers, one of which is in the form of conversations between the host and a guest. Therefore, the collection contains examples of Emirati-English code-switching in both formal and natural conversational contexts. In this paper, we describe the process of data collection and annotation, and describe some of the features and statistics of the resulting data set. In addition, we evaluate the performance of pre-trained Arabic and multi-lingual ASR systems on our dataset, demonstrating the shortcomings of existing models on this low-resource dialectal Arabic, and the additional challenge of recognizing code-switching in ASR. The dataset will be made publicly available for research use.
This paper describes a data augmentation technique for boosting the performance of speech-based diacritic restoration. Our experiments demonstrate the utility of this appraoch, resulting in improved generalization of all models across different test sets. In addition, we describe the first multi-modal diacritic restoration model, utilizing both speech and text as input modalities. This type of model can be used to diacritize speech transcripts. Unlike previous work that relies on an external ASR model, the proposed model is far more compact and efficient. While the multi-modal framework does not surpass the ASR-based model for this task, it offers a promising approach for improving the efficiency of speech-based diacritization, with a potential for improvement using data augmentation and other methods.
Automatic text-based diacritic restoration models generally have high diacritic error rates when applied to speech transcripts as a result of domain and style shifts in spoken language. In this work, we explore the possibility of improving the performance of automatic diacritic restoration when applied to speech data by utilizing parallel spoken utterances. In particular, we use the pre-trained Whisper ASR model fine-tuned on relatively small amounts of diacritized Arabic speech data to produce rough diacritized transcripts for the speech utterances, which we then use as an additional input for diacritic restoration models. The proposed framework consistently improves diacritic restoration performance compared to text-only baselines. Our results highlight the inadequacy of current text-based diacritic restoration models for speech data sets and provide a new baseline for speech-based diacritic restoration.
We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use.
In this paper, we describe a spoken Arabic dialect identification (ADI) model for Arabic that consistently outperforms previously published results on two benchmark datasets: ADI-5 and ADI-17. We explore two architectural variations: ResNet and ECAPA-TDNN, coupled with two types of acoustic features: MFCCs and features exratected from the pre-trained self-supervised model UniSpeech-SAT Large, as well as a fusion of all four variants. We find that individually, ECAPA-TDNN network outperforms ResNet, and models with UniSpeech-SAT features outperform models with MFCCs by a large margin. Furthermore, a fusion of all four variants consistently outperforms individual models. Our best models outperform previously reported results on both datasets, with accuracies of 84.7% and 96.9% on ADI-5 and ADI-17, respectively.
Lexical ambiguity, a challenging phenomenon in all natural languages, is particularly prevalent for languages with diacritics that tend to be omitted in writing, such as Arabic. Omitting diacritics leads to an increase in the number of homographs: different words with the same spelling. Diacritic restoration could theoretically help disambiguate these words, but in practice, the increase in overall sparsity leads to performance degradation in NLP applications. In this paper, we propose approaches for automatically marking a subset of words for diacritic restoration, which leads to selective homograph disambiguation. Compared to full or no diacritic restoration, these approaches yield selectively-diacritized datasets that balance sparsity and lexical disambiguation. We evaluate the various selection strategies extrinsically on several downstream applications: neural machine translation, part-of-speech tagging, and semantic textual similarity. Our experiments on Arabic show promising results, where our devised strategies on selective diacritization lead to a more balanced and consistent performance in downstream applications.
Vector averaging remains one of the most popular sentence embedding methods in spite of its obvious disregard for syntactic structure. While more complex sequential or convolutional networks potentially yield superior classification performance, the improvements in classification accuracy are typically mediocre compared to the simple vector averaging. As an efficient alternative, we propose the use of discrete cosine transform (DCT) to compress word sequences in an order-preserving manner. The lower order DCT coefficients represent the overall feature patterns in sentences, which results in suitable embeddings for tasks that could benefit from syntactic features. Our results in semantic probing tasks demonstrate that DCT embeddings indeed preserve more syntactic information compared with vector averaging. With practically equivalent complexity, the model yields better overall performance in downstream classification tasks that correlate with syntactic features, which illustrates the capacity of DCT to preserve word order information.
Cross-lingual word vectors are typically obtained by fitting an orthogonal matrix that maps the entries of a bilingual dictionary from a source to a target vector space. Word vectors, however, are most commonly used for sentence or document-level representations that are calculated as the weighted average of word embeddings. In this paper, we propose an alternative to word-level mapping that better reflects sentence-level cross-lingual similarity. We incorporate context in the transformation matrix by directly mapping the averaged embeddings of aligned sentences in a parallel corpus. We also implement cross-lingual mapping of deep contextualized word embeddings using parallel sentences with word alignments. In our experiments, both approaches resulted in cross-lingual sentence embeddings that outperformed context-independent word mapping in sentence translation retrieval. Furthermore, the sentence-level transformation could be used for word-level mapping without loss in word translation quality.
We develop and investigate several cross-lingual alignment approaches for neural sentence embedding models, such as the supervised inference classifier, InferSent, and sequential encoder-decoder models. We evaluate three alignment frameworks applied to these models: joint modeling, representation transfer learning, and sentence mapping, using parallel text to guide the alignment. Our results support representation transfer as a scalable approach for modular cross-lingual alignment of neural sentence embeddings, where we observe better performance compared to joint models in intrinsic and extrinsic evaluations, particularly with smaller sets of parallel data.
Most existing methods for automatic bilingual dictionary induction rely on prior alignments between the source and target languages, such as parallel corpora or seed dictionaries. For many language pairs, such supervised alignments are not readily available. We propose an unsupervised approach for learning a bilingual dictionary for a pair of languages given their independently-learned monolingual word embeddings. The proposed method exploits local and global structures in monolingual vector spaces to align them such that similar words are mapped to each other. We show empirically that the performance of bilingual correspondents that are learned using our proposed unsupervised method is comparable to that of using supervised bilingual correspondents from a seed dictionary.
We evaluated various compositional models, from bag-of-words representations to compositional RNN-based models, on several extrinsic supervised and unsupervised evaluation benchmarks. Our results confirm that weighted vector averaging can outperform context-sensitive models in most benchmarks, but structural features encoded in RNN models can also be useful in certain classification tasks. We analyzed some of the evaluation datasets to identify the aspects of meaning they measure and the characteristics of the various models that explain their performance variance.