Gene Louis Kim


2019

pdf bib
A Type-coherent, Expressive Representation as an Initial Step to Language Understanding
Gene Louis Kim | Lenhart Schubert
Proceedings of the 13th International Conference on Computational Semantics - Long Papers

A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding: adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.

pdf bib
Towards Natural Language Story Understanding with Rich Logical Schemas
Lane Lawley | Gene Louis Kim | Lenhart Schubert
Proceedings of the Sixth Workshop on Natural Language and Computer Science

Generating “commonsense’’ knowledge for intelligent understanding and reasoning is a difficult, long-standing problem, whose scale challenges the capacity of any approach driven primarily by human input. Furthermore, approaches based on mining statistically repetitive patterns fail to produce the rich representations humans acquire, and fall far short of human efficiency in inducing knowledge from text. The idea of our approach to this problem is to provide a learning system with a “head start” consisting of a semantic parser, some basic ontological knowledge, and most importantly, a small set of very general schemas about the kinds of patterns of events (often purposive, causal, or socially conventional) that even a one- or two-year-old could reasonably be presumed to possess. We match these initial schemas to simple children’s stories, obtaining concrete instances, and combining and abstracting these into new candidate schemas. Both the initial and generated schemas are specified using a rich, expressive logical form. While modern approaches to schema reasoning often only use slot-and-filler structures, this logical form allows us to specify complex relations and constraints over the slots. Though formal, the representations are language-like, and as such readily relatable to NL text. The agents, objects, and other roles in the schemas are represented by typed variables, and the event variables can be related through partial temporal ordering and causal relations. To match natural language stories with existing schemas, we first parse the stories into an underspecified variant of the logical form used by the schemas, which is suitable for most concrete stories. We include a walkthrough of matching a children’s story to these schemas and generating inferences from these matches.