This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Document-level event extraction aims to extract structured event information from unstructured text. However, a single document often contains limited event information and the roles of different event arguments may be biased due to the influence of the information source.This paper addresses the limitations of traditional document-level event extraction by proposing the task of cross-document event extraction (CDEE) to integrate event information from multiple documents and provide a comprehensive perspective on events. We construct a novel cross-document event extraction dataset, namely CLES, which contains 20,059 documents and 37,688 mention-level events, where over 70% of them are cross-document. To address the task, we propose a CDEE pipeline that includes 5 steps, namely event extraction, coreference resolution, entity normalization, role normalization and entity-role resolution. Our CDEE pipeline achieves about 72% F1 in end-to-end cross-document event extraction, suggesting the challenge of this task and setting up a benchmark for future research. Our work builds a new line of information extraction research and will attract new research attention.
Aspect-based Sentiment Analysis (ABSA) is extensively researched in the NLP community, yet related models face challenges due to data sparsity when shifting to a new domain. Hence, data augmentation for cross-domain ABSA has attracted increasing attention in recent years. However, two key points have been neglected in prior studies: First, target domain unlabeled data are labeled with pseudo labels by the model trained in the source domain with little quality control, leading to inaccuracy and error propagation. Second, the label and text patterns of generated labeled data are monotonous, thus limiting the robustness and generalization ability of trained ABSA models. In this paper, we aim to design a simple yet effective framework to address the above shortages in ABSA data augmentation, called Refining and Synthesis Data Augmentation (RSDA). Our framework roughly includes two steps: First, it refines generated labeled data using a natural language inference (NLI) filter to control data quality. Second, it synthesizes diverse labeled data via novel label composition and paraphrase approaches. We conduct experiments on 4 kinds of ABSA subtasks, and our framework outperforms 7 strong baselines, demonstrating its effectiveness.
In the field of information extraction (IE), tasks across a wide range of modalities and their combinations have been traditionally studied in isolation, leaving a gap in deeply recognizing and analyzing cross-modal information. To address this, this work for the first time introduces the concept of grounded Multimodal Universal Information Extraction (MUIE), providing a unified task framework to analyze any IE tasks over various modalities, along with their fine-grained groundings. To tackle MUIE, we tailor a multimodal large language model (MLLM), Reamo, capable of extracting and grounding information from all modalities, i.e., recognizing everything from all modalities at once. Reamo is updated via varied tuning strategies, equipping it with powerful capabilities for information recognition and fine-grained multimodal grounding. To address the absence of a suitable benchmark for grounded MUIE, we curate a high-quality, diverse, and challenging test set, which encompasses IE tasks across 9 common modality combinations with the corresponding multimodal groundings. The extensive comparison of Reamo with existing MLLMs integrated into pipeline approaches demonstrates its advantages across all evaluation dimensions, establishing a strong benchmark for the follow-up research. Our resources are publicly released at https://haofei.vip/MUIE.
Existing cross-document event coreference resolution models, which either compute mention similarity directly or enhance mention representation by extracting event arguments (such as location, time, agent, and patient), lackingmthe ability to utilize document-level information. As a result, they struggle to capture long-distance dependencies. This shortcoming leads to their underwhelming performance in determining coreference for the events where their argument information relies on long-distance dependencies. In light of these limitations, we propose the construction of document-level Rhetorical Structure Theory (RST) trees and cross-document Lexical Chains to model the structural and semantic information of documents. Subsequently, cross-document heterogeneous graphs are constructed and GAT is utilized to learn the representations of events. Finally, a pair scorer calculates the similarity between each pair of events and co-referred events can be recognized using standard clustering algorithm. Additionally, as the existing cross-document event coreference datasets are limited to English, we have developed a large-scale Chinese cross-document event coreference dataset to fill this gap, which comprises 53,066 event mentions and 4,476 clusters. After applying our model on the English and Chinese datasets respectively, it outperforms all baselines by large margins.
Large Language Models (LLMs) are now being considered as judges of high efficiency to evaluate the quality of answers generated by candidate models. However, their judgments may be influenced by complex scenarios and inherent biases, raising concerns about their reliability. This study aims to bridge this gap by introducing four unexplored factors and examining the performance of LLMs as judges, namely answer quantity, inducing statements, judging strategy, and judging style. Additionally, we introduce a new dimension of question difficulty to provide a more comprehensive understanding of LLMs’ judgments across varying question intricacies. We employ ChatGPT, GPT-4, Gemini, and Claude-2 as judges and conduct experiments on Vicuna Benchmark and MT-bench. Our study reveals that LLMs’ judging abilities are susceptible to the influence of these four factors, and analyzing from the newly proposed dimension of question difficulty is highly necessary. We also provide valuable insights into optimizing LLMs’ performance as judges, enhancing their reliability and adaptability across diverse evaluation scenarios.
Structured Sentiment Analysis (SSA) was cast as a problem of bi-lexical dependency graph parsing by prior studies.Multiple formulations have been proposed to construct the graph, which share several intrinsic drawbacks:(1) The internal structures of spans are neglected, thus only the boundary tokens of spans are used for relation prediction and span recognition, thus hindering the model’s expressiveness;(2) Long spans occupy a significant proportion in the SSA datasets, which further exacerbates the problem of internal structure neglect.In this paper, we treat the SSA task as a dependency parsing task on partially-observed dependency trees, regarding flat spans without determined tree annotations as latent subtrees to consider internal structures of spans.We propose a two-stage parsing method and leverage TreeCRFs with a novel constrained inside algorithm to model latent structures explicitly, which also takes advantages of joint scoring graph arcs and headed spans for global optimization and inference. Results of extensive experiments on five benchmark datasets reveal that our method performs significantly better than all previous bi-lexical methods, achieving new state-of-the-art.
Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks.
The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. To bridge the gap between fine-grained sentiment analysis and conversational opinion mining, in this work, we introduce a novel task of conversational aspect-based sentiment quadruple analysis, namely DiaASQ, aiming to detect the quadruple of target-aspect-opinion-sentiment in a dialogue. We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages. We deliberately develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction, and manages to incorporate rich dialogue-specific and discourse feature representations for better cross-utterance quadruple extraction. We hope the new benchmark will spur more advancements in the sentiment analysis community.
While sentiment analysis systems try to determine the sentiment polarities of given targets based on the key opinion expressions in input texts, in implicit sentiment analysis (ISA) the opinion cues come in an implicit and obscure manner. Thus detecting implicit sentiment requires the common-sense and multi-hop reasoning ability to infer the latent intent of opinion. Inspired by the recent chain-of-thought (CoT) idea, in this work we introduce a Three-hop Reasoning (THOR) CoT framework to mimic the human-like reasoning process for ISA. We design a three-step prompting principle for THOR to step-by-step induce the implicit aspect, opinion, and finally the sentiment polarity. Our THOR+Flan-T5 (11B) pushes the state-of-the-art (SoTA) by over 6% F1 on supervised setup. More strikingly, THOR+GPT3 (175B) boosts the SoTA by over 50% F1 on zero-shot setting.
Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and arguments,which suffer from error propagation. Therefore, we design a simple yet effective tagging scheme and model to formulate EE as word-word relation recognition, called OneEE. The relations between trigger or argument words are simultaneously recognized in one stage with parallel grid tagging, thus yielding a very fast event extraction speed. The model is equipped with an adaptive event fusion module to generate event-aware representations and a distance-aware predictor to integrate relative distance information for word-word relation recognition, which are empirically demonstrated to be effective mechanisms. Experiments on 3 overlapped and nested EE benchmarks, namely FewFC, Genia11, and Genia13, show that OneEE achieves the state-of-the-art (SOTA) results. Moreover, the inference speed of OneEE is faster than those of baselines in the same condition, and can be further substantially improved since it supports parallel inference.
Emotion cause pair extraction (ECPE), as one of the derived subtasks of emotion cause analysis (ECA), shares rich inter-related features with emotion extraction (EE) and cause extraction (CE). Therefore EE and CE are frequently utilized as auxiliary tasks for better feature learning, modeled via multi-task learning (MTL) framework by prior works to achieve state-of-the-art (SoTA) ECPE results. However, existing MTL-based methods either fail to simultaneously model the specific features and the interactive feature in between, or suffer from the inconsistency of label prediction. In this work, we consider addressing the above challenges for improving ECPE by performing two alignment mechanisms with a novel Aˆ2Net model. We first propose a feature-task alignment to explicitly model the specific emotion-&cause-specific features and the shared interactive feature. Besides, an inter-task alignment is implemented, in which the label distance between the ECPE and the combinations of EE&CE are learned to be narrowed for better label consistency. Evaluations of benchmarks show that our methods outperform current best-performing systems on all ECA subtasks. Further analysis proves the importance of our proposed alignment mechanisms for the task.
Relation Extraction (RE) is a fundamental task of information extraction, which has attracted a large amount of research attention. Previous studies focus on extracting the relations within a sentence or document, while currently researchers begin to explore cross-document RE. However, current cross-document RE methods directly utilize text snippets surrounding target entities in multiple given documents, which brings considerable noisy and non-relevant sentences. Moreover, they utilize all the text paths in a document bag in a coarse-grained way, without considering the connections between these text paths.In this paper, we aim to address both of these shortages and push the state-of-the-art for cross-document RE. First, we focus on input construction for our RE model and propose an entity-based document-context filter to retain useful information in the given documents by using the bridge entities in the text paths. Second, we propose a cross-document RE model based on cross-path entity relation attention, which allow the entity relations across text paths to interact with each other. We compare our cross-document RE method with the state-of-the-art methods in the dataset CodRED. Our method outperforms them by at least 10% in F1, thus demonstrating its effectiveness.
The state-of-the-art model for structured sentiment analysis casts the task as a dependency parsing problem, which has some limitations: (1) The label proportions for span prediction and span relation prediction are imbalanced. (2) The span lengths of sentiment tuple components may be very large in this task, which will further exacerbates the imbalance problem. (3) Two nodes in a dependency graph cannot have multiple arcs, therefore some overlapped sentiment tuples cannot be recognized. In this work, we propose nichetargeting solutions for these issues. First, we introduce a novel labeling strategy, which contains two sets of token pair labels, namely essential label set and whole label set. The essential label set consists of the basic labels for this task, which are relatively balanced and applied in the prediction layer. The whole label set includes rich labels to help our model capture various token relations, which are applied in the hidden layer to softly influence our model. Moreover, we also propose an effective model to well collaborate with our labeling strategy, which is equipped with the graph attention networks to iteratively refine token representations, and the adaptive multi-label classifier to dynamically predict multiple relations between token pairs. We perform extensive experiments on 5 benchmark datasets in four languages. Experimental results show that our model outperforms previous SOTA models by a large margin.
Although the existing Named Entity Recognition (NER) models have achieved promising performance, they suffer from certain drawbacks. The sequence labeling-based NER models do not perform well in recognizing long entities as they focus only on word-level information, while the segment-based NER models which focus on processing segment instead of single word are unable to capture the word-level dependencies within the segment. Moreover, as boundary detection and type prediction may cooperate with each other for the NER task, it is also important for the two sub-tasks to mutually reinforce each other by sharing their information. In this paper, we propose a novel Modularized Interaction Network (MIN) model which utilizes both segment-level information and word-level dependencies, and incorporates an interaction mechanism to support information sharing between boundary detection and type prediction to enhance the performance for the NER task. We have conducted extensive experiments based on three NER benchmark datasets. The performance results have shown that the proposed MIN model has outperformed the current state-of-the-art models.
Research on overlapped and discontinuous named entity recognition (NER) has received increasing attention. The majority of previous work focuses on either overlapped or discontinuous entities. In this paper, we propose a novel span-based model that can recognize both overlapped and discontinuous entities jointly. The model includes two major steps. First, entity fragments are recognized by traversing over all possible text spans, thus, overlapped entities can be recognized. Second, we perform relation classification to judge whether a given pair of entity fragments to be overlapping or succession. In this way, we can recognize not only discontinuous entities, and meanwhile doubly check the overlapped entities. As a whole, our model can be regarded as a relation extraction paradigm essentially. Experimental results on multiple benchmark datasets (i.e., CLEF, GENIA and ACE05) show that our model is highly competitive for overlapped and discontinuous NER.
CodaLab is an open-source web-based platform for collaborative computational research. Although CodaLab has gained popularity in the research community, its interface has limited support for creating reusable tools that can be easily applied to new datasets and composed into pipelines. In clinical domain, natural language processing (NLP) on medical notes generally involves multiple steps, like tokenization, named entity recognition, etc. Since these steps require different tools which are usually scattered in different publications, it is not easy for researchers to use them to process their own datasets. In this paper, we present BENTO, a workflow management platform with a graphic user interface (GUI) that is built on top of CodaLab, to facilitate the process of building clinical NLP pipelines. BENTO comes with a number of clinical NLP tools that have been pre-trained using medical notes and expert annotations and can be readily used for various clinical NLP tasks. It also allows researchers and developers to create their custom tools (e.g., pre-trained NLP models) and use them in a controlled and reproducible way. In addition, the GUI interface enables researchers with limited computer background to compose tools into NLP pipelines and then apply the pipelines on their own datasets in a “what you see is what you get” (WYSIWYG) way. Although BENTO is designed for clinical NLP applications, the underlying architecture is flexible to be tailored to any other domains.
Emotion detection in conversations (EDC) is to detect the emotion for each utterance in conversations that have multiple speakers. Different from the traditional non-conversational emotion detection, the model for EDC should be context-sensitive (e.g., understanding the whole conversation rather than one utterance) and speaker-sensitive (e.g., understanding which utterance belongs to which speaker). In this paper, we propose a transformer-based context- and speaker-sensitive model for EDC, namely HiTrans, which consists of two hierarchical transformers. We utilize BERT as the low-level transformer to generate local utterance representations, and feed them into another high-level transformer so that utterance representations could be sensitive to the global context of the conversation. Moreover, we exploit an auxiliary task to make our model speaker-sensitive, called pairwise utterance speaker verification (PUSV), which aims to classify whether two utterances belong to the same speaker. We evaluate our model on three benchmark datasets, namely EmoryNLP, MELD and IEMOCAP. Results show that our model outperforms previous state-of-the-art models.
Classical Chinese poetry is a jewel in the treasure house of Chinese culture. Previous poem generation models only allow users to employ keywords to interfere the meaning of generated poems, leaving the dominion of generation to the model. In this paper, we propose a novel task of generating classical Chinese poems from vernacular, which allows users to have more control over the semantic of generated poems. We adapt the approach of unsupervised machine translation (UMT) to our task. We use segmentation-based padding and reinforcement learning to address under-translation and over-translation respectively. According to experiments, our approach significantly improve the perplexity and BLEU compared with typical UMT models. Furthermore, we explored guidelines on how to write the input vernacular to generate better poems. Human evaluation showed our approach can generate high-quality poems which are comparable to amateur poems.
abstract In this article, we describe our approach for the Bacteria Biotopes relation extraction (BB-rel) subtask in the BioNLP Shared Task 2019. This task aims to promote the development of text mining systems that extract relationships between Microorganism, Habitat and Phenotype entities. In this paper, we propose a novel approach for dependency graph construction based on lexical chains, so one dependency graph can represent one or multiple sentences. After that, we propose a neural network model which consists of the bidirectional long short-term memories and an attention graph convolution neural network to learn relation extraction features from the graph. Our approach is able to extract both intra- and inter-sentence relations, and meanwhile utilize syntax information. The results show that our approach achieved the best F1 (66.3%) in the official evaluation participated by 7 teams.