Fabian Schüssler

Also published as: Fabian Schussler


2024

pdf
astroECR : enrichissement d’un corpus astrophysique en entités nommées, coréférences et relations sémantiques
Atilla Kaan Alkan | Felix Grezes | Cyril Grouin | Fabian Schüssler | Pierre Zweigenbaum
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Le manque de ressources annotées constitue un défi majeur pour le traitement automatique de la langue en astrophysique. Afin de combler cette lacune, nous présentons astroECR, une extension du corpus TDAC (Time-Domain Astrophysics Corpus). Notre corpus, constitué de 300 rapports d’observation en anglais, étend le schéma d’annotation initial de TDAC en introduisant cinq classes d’entités nommées supplémentaires spécifiques à l’astrophysique. Nous avons enrichi les annotations en incluant les coréférences, les relations sémantiques entre les objets célestes et leurs propriétés physiques, ainsi qu’en normalisant les noms d’objets célestes via des bases de données astronomiques. L’utilité de notre corpus est démontrée en fournissant des scores de référence à travers quatre tâches~: la reconnaissance d’entités nommées, la résolution de coréférences, la détection de relations, et la normalisation des noms d’objets célestes. Nous mettons à disposition le corpus ainsi que son guide d’annotation, les codes sources, et les modèles associés.

pdf
Enriching a Time-Domain Astrophysics Corpus with Named Entity, Coreference and Astrophysical Relationship Annotations
Atilla Kaan Alkan | Felix Grezes | Cyril Grouin | Fabian Schussler | Pierre Zweigenbaum
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Interest in Astrophysical Natural Language Processing (NLP) has increased recently, fueled by the development of specialized language models for information extraction. However, the scarcity of annotated resources for this domain is still a significant challenge. Most existing corpora are limited to Named Entity Recognition (NER) tasks, leaving a gap in resource diversity. To address this gap and facilitate a broader spectrum of NLP research in astrophysics, we introduce astroECR, an extension of our previously built Time-Domain Astrophysics Corpus (TDAC). Our contributions involve expanding it to cover named entities, coreferences, annotations related to astrophysical relationships, and normalizing celestial object names. We showcase practical utility through baseline models for four NLP tasks and provide the research community access to our corpus, code, and models.

2022

pdf
TDAC, The First Corpus in Time-Domain Astrophysics: Analysis and First Experiments on Named Entity Recognition
Atilla Kaan Alkan | Cyril Grouin | Fabian Schussler | Pierre Zweigenbaum
Proceedings of the first Workshop on Information Extraction from Scientific Publications

The increased interest in time-domain astronomy over the last decades has resulted in a substantial increase in observation reports publication leading to a saturation of how astrophysicists read, analyze and classify information. Due to the short life span of the detected astronomical events, the information related to the characterization of new phenomena has to be communicated and analyzed very rapidly to allow other observatories to react and conduct their follow-up observations. This paper introduces TDAC: the first Corpus in Time-Domain Astrophysics, based on observation reports. We also present the NLP experiments we made for named entity recognition based on annotations we made and annotations from the WIESP NLP Challenge.

pdf
A Majority Voting Strategy of a SciBERT-based Ensemble Models for Detecting Entities in the Astrophysics Literature (Shared Task)
Atilla Kaan Alkan | Cyril Grouin | Fabian Schussler | Pierre Zweigenbaum
Proceedings of the first Workshop on Information Extraction from Scientific Publications

Detecting Entities in the Astrophysics Literature (DEAL) is a proposed shared task in the scope of the first Workshop on Information Extraction from Scientific Publications (WIESP) at AACL-IJCNLP 2022. It aims to propose systems identifying astrophysical named entities. This article presents our system based on a majority voting strategy of an ensemble composed of multiple SciBERT models. The system we propose is ranked second and outperforms the baseline provided by the organisers by achieving an F1 score of 0.7993 and a Matthews Correlation Coefficient (MCC) score of 0.8978 in the testing phase.