Fabian Haak


2024

pdf
BATS: BenchmArking Text Simplicity 🦇
Christin Kreutz | Fabian Haak | Björn Engelmann | Philipp Schaer
Findings of the Association for Computational Linguistics ACL 2024

Evaluation of text simplification currently focuses on the difference of a source text to its simplified variant. Datasets for this evaluation base on a specific topic and group of readers for which is simplified. The broad applicability of text simplification and specifics that come with intended target audiences (e.g., children compared to adult non-experts) are disregarded. An explainable assessment of the overall simplicity of text is missing. This work is BenchmArking Text Simplicity (BATS): we provide an explainable method to assess practical and concrete rules from literature describing features of simplicity and complexity of text. Our experiments on 15 datasets for text simplification highlight differences in features that are important in different domains of text and for different intended target audiences.

2021

pdf
IRCologne at GermEval 2021: Toxicity Classification
Fabian Haak | Björn Engelmann
Proceedings of the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments

In this paper, we describe the TH Köln’s submission for the Shared Task on the Identification of Toxic Comments at GermEval 2021. Toxicity is a severe and latent problem in comments in online discussions. Complex language model based methods have shown the most success in identifying toxicity. However, these approaches lack explainability and might be insensitive to domain-specific renditions of toxicity. In the scope of the GermEval 2021 toxic comment classification task (Risch et al., 2021), we employed a simple but promising combination of term-frequency-based classification and rule-based labeling to produce effective but to no lesser degree explainable toxicity predictions.