Divya Jyoti Bajpai


2024

pdf
CeeBERT: Cross-Domain Inference in Early Exit BERT
Divya Jyoti Bajpai | Manjesh Hanawal
Findings of the Association for Computational Linguistics ACL 2024

Pre-trained Language Models (PLMs), like BERT, with self-supervision objectives exhibit remarkable performance and generalization across various tasks. However, they suffer in inference latency due to their large size. To address this issue, side branches are attached at intermediate layers, enabling early inference of samples without requiring them to pass through all layers. However, the challenge is to decide which layer to infer and exit each sample so that the accuracy and latency are balanced. Moreover, the distribution of the samples to be inferred may differ from that used for training necessitating cross-domain adaptation. We propose an online learning algorithm named Cross-Domain Inference in Early Exit BERT (CeeBERT) that dynamically determines early exits of samples based on the level of confidence at each exit point. CeeBERT learns optimal thresholds from domain-specific confidence observed at intermediate layers on the fly, eliminating the need for labeled data. Experimental results on five distinct datasets with BERT and ALBERT models demonstrate CeeBERT’s ability to improve latency by reducing unnecessary computations with minimal drop in performance. By adapting to the threshold values, CeeBERT can speed up the BERT/ALBERT models by - 3.1× with minimal drop in accuracy. The anonymized source code is available at https://github.com/Div290/CeeBERT.

pdf
FAIR: Filtering of Automatically Induced Rules
Divya Jyoti Bajpai | Ayush Maheshwari | Manjesh Hanawal | Ganesh Ramakrishnan
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

The availability of large annotated data can be a critical bottleneck in training machine learning algorithms successfully, especially when applied to diverse domains. Weak supervision offers a promising alternative by accelerating the creation of labeled training data using domainspecific rules. However, it requires users to write a diverse set of high-quality rules to assign labels to the unlabeled data. Automatic Rule Induction (ARI) approaches circumvent this problem by automatically creating rules from features on a small labeled set and filtering a final set of rules from them. In the ARI approach, the crucial step is to filter out a set of a high-quality useful subset of rules from the large set of automatically created rules. In this paper, we propose an algorithm FAIR (Filtering of Automatically Induced Rules) to filter rules from a large number of automatically induced rules using submodular objective functions that account for the collective precision, coverage, and conflicts of the rule set. We experiment with three ARI approaches and five text classification datasets to validate the superior performance of our algorithm with respect to several semi-supervised label aggregation approaches. Further, we show that FAIR achieves statistically significant results in comparison to existing rule-filtering approaches. The source code is available at https://github.com/ ayushbits/FAIR-LF-Induction.