Daniel Röder


2024

pdf
Retrieval-Augmented Knowledge Integration into Language Models: A Survey
Yuxuan Chen | Daniel Röder | Justus-Jonas Erker | Leonhard Hennig | Philippe Thomas | Sebastian Möller | Roland Roller
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

This survey analyses how external knowledge can be integrated into language models in the context of retrieval-augmentation.The main goal of this work is to give an overview of: (1) Which external knowledge can be augmented? (2) Given a knowledge source, how to retrieve from it and then integrate the retrieved knowledge? To achieve this, we define and give a mathematical formulation of retrieval-augmented knowledge integration (RAKI). We discuss retrieval and integration techniques separately in detail, for each of the following knowledge formats: knowledge graph, tabular and natural language.