Chen Shani


2023

pdf
FAME: Flexible, Scalable Analogy Mappings Engine
Shahar Jacob | Chen Shani | Dafna Shahaf
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Analogy is one of the core capacities of human cognition; when faced with new situations, we often transfer prior experience from other domains. Most work on computational analogy relies heavily on complex, manually crafted input. In this work, we relax the input requirements, requiring only names of entities to be mapped. We automatically extract commonsense representations and use them to identify a mapping between the entities. Unlike previous works, our framework can handle partial analogies and suggest new entities to be added. Moreover, our method’s output is easily interpretable, allowing for users to understand why a specific mapping was chosen. Experiments show that our model correctly maps 81.2% of classical 2x2 analogy problems (guess level=50%). On larger problems, it achieves 77.8% accuracy (mean guess level=13.1%). In another experiment, we show our algorithm outperforms human performance, and the automatic suggestions of new entities resemble those suggested by humans. We hope this work will advance computational analogy by paving the way to more flexible, realistic input requirements, with broader applicability.

pdf
Towards Concept-Aware Large Language Models
Chen Shani | Jilles Vreeken | Dafna Shahaf
Findings of the Association for Computational Linguistics: EMNLP 2023

Concepts play a pivotal role in various human cognitive functions, including learning, reasoning and communication. However, there is very little work on endowing machines with the ability to form and reason with concepts. In particular, state-of-the-art large language models (LLMs) work at the level of tokens, not concepts. In this work, we analyze how well contemporary LLMs capture human concepts and their structure. We then discuss ways to develop concept-aware LLMs, taking place at different stages of the pipeline. We sketch a method for pretraining LLMs using concepts, and also explore the simpler approach that uses the output of existing LLMs. Despite its simplicity, our proof-of-concept is shown to better match human intuition, as well as improve the robustness of predictions. These preliminary results underscore the promise of concept-aware LLMs.

2021

pdf bib
How Did This Get Funded?! Automatically Identifying Quirky Scientific Achievements
Chen Shani | Nadav Borenstein | Dafna Shahaf
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Humor is an important social phenomenon, serving complex social and psychological functions. However, despite being studied for millennia humor is computationally not well understood, often considered an AI-complete problem. In this work, we introduce a novel setting in humor mining: automatically detecting funny and unusual scientific papers. We are inspired by the Ig Nobel prize, a satirical prize awarded annually to celebrate funny scientific achievements (example past winner: “Are cows more likely to lie down the longer they stand?”). This challenging task has unique characteristics that make it particularly suitable for automatic learning. We construct a dataset containing thousands of funny papers and use it to learn classifiers, combining findings from psychology and linguistics with recent advances in NLP. We use our models to identify potentially funny papers in a large dataset of over 630,000 articles. The results demonstrate the potential of our methods, and more broadly the utility of integrating state-of-the-art NLP methods with insights from more traditional disciplines

2020

pdf
Language (Re)modelling: Towards Embodied Language Understanding
Ronen Tamari | Chen Shani | Tom Hope | Miriam R L Petruck | Omri Abend | Dafna Shahaf
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While natural language understanding (NLU) is advancing rapidly, today’s technology differs from human-like language understanding in fundamental ways, notably in its inferior efficiency, interpretability, and generalization. This work proposes an approach to representation and learning based on the tenets of embodied cognitive linguistics (ECL). According to ECL, natural language is inherently executable (like programming languages), driven by mental simulation and metaphoric mappings over hierarchical compositions of structures and schemata learned through embodied interaction. This position paper argues that the use of grounding by metaphoric reasoning and simulation will greatly benefit NLU systems, and proposes a system architecture along with a roadmap towards realizing this vision.