Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates, which is crucial for location-related services such as navigation maps. Unlike the general sentences, Chinese geographic contexts are closely intertwined with geographical concepts, from general spans (e.g., province) to specific spans (e.g., road). Given this feature, we propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines. Our methodology begins by employing off-the-shelf tools to associate text with geographical spans, treating them as chunking units. Then, we present a multi-task learning module to simultaneously acquire an effective attention matrix that determines chunk contributions to geographic representations. Furthermore, we put forth an asynchronous update mechanism for the proposed task, aiming to guide the model to focus on specific chunks. Experiments on two Chinese benchmark datasets, show that the Geo-Encoder achieves significant improvements when compared to state-of-the-art baselines. Notably, it leads to a substantial improvement in the Hit@1 score of MGEO-BERT, increasing it by 6.22% from 62.76 to 68.98 on the GeoTES dataset.
Multiple pre-training objectives fill the vacancy of the understanding capability of single-objective language modeling, which serves the ultimate purpose of pre-trained language models (PrLMs), generalizing well on a mass of scenarios. However, learning multiple training objectives in a single model is challenging due to the unknown relative significance as well as the potential contrariety between them. Empirical studies have shown that the current objective sampling in an ad-hoc manual setting makes the learned language representation barely converge to the desired optimum. Thus, we propose MOMETAS, a novel adaptive sampler based on meta-learning, which learns the latent sampling pattern on arbitrary pre-training objectives. Such a design is lightweight with negligible additional training overhead. To validate our approach, we adopt five objectives and conduct continual pre-training with BERT-base and BERT-large models, where MOMETAS demonstrates universal performance gain over other rule-based sampling strategies on 14 natural language processing tasks.
Although deep neural networks are effective at extracting high-level features, classification methods usually encode an input into a vector representation via simple feature aggregation operations (e.g. pooling). Such operations limit the performance. For instance, a multi-label document may contain several concepts. In this case, one vector can not sufficiently capture its salient and discriminative content. Thus, we propose Hyperbolic Capsule Networks (HyperCaps) for Multi-Label Classification (MLC), which have two merits. First, hyperbolic capsules are designed to capture fine-grained document information for each label, which has the ability to characterize complicated structures among labels and documents. Second, Hyperbolic Dynamic Routing (HDR) is introduced to aggregate hyperbolic capsules in a label-aware manner, so that the label-level discriminative information can be preserved along the depth of neural networks. To efficiently handle large-scale MLC datasets, we additionally present a new routing method to adaptively adjust the capsule number during routing. Extensive experiments are conducted on four benchmark datasets. Compared with the state-of-the-art methods, HyperCaps significantly improves the performance of MLC especially on tail labels.
Multi-label text classification (MLTC) aims to tag most relevant labels for the given document. In this paper, we propose a Label-Specific Attention Network (LSAN) to learn a label-specific document representation. LSAN takes advantage of label semantic information to determine the semantic connection between labels and document for constructing label-specific document representation. Meanwhile, the self-attention mechanism is adopted to identify the label-specific document representation from document content information. In order to seamlessly integrate the above two parts, an adaptive fusion strategy is proposed, which can effectively output the comprehensive label-specific document representation to build multi-label text classifier. Extensive experimental results demonstrate that LSAN consistently outperforms the state-of-the-art methods on four different datasets, especially on the prediction of low-frequency labels. The code and hyper-parameter settings are released to facilitate other researchers.