2024
pdf
abs
CR-LLM: A Dataset and Optimization for Concept Reasoning of Large Language Models
Nianqi Li
|
Jingping Liu
|
Sihang Jiang
|
Haiyun Jiang
|
Yanghua Xiao
|
Jiaqing Liang
|
Zujie Liang
|
Feng Wei
|
Jinglei Chen
|
Zhenghong Hao
|
Bing Han
Findings of the Association for Computational Linguistics ACL 2024
Concept reasoning is an important capability for models to understand the world. However, the existing datasets, such as concept extraction and concept generation, suffer from modeledge leakage and context leakage. To address these limitations, we construct a dataset of concept reasoning for large language models (CR-LLM) with modeledge leakage prevention and context leakage prevention, which consists of 2,167 samples and covers different concept types. In addition, we propose a hybrid reasoning method, consisting of inductive reasoning, deductive reasoning and a controller. This method allows large language models to adaptively select the optimal reasoning method for each input sample. Finally, we conduct extensive experiments on CR-LLM using different models and methods. The results show that existing large language models and reasoning methods perform sub-optimally in the concept reasoning task. In contrast, our proposed method significantly improves the capabilities, achieving a 7% increase in accuracy compared to CoT and demonstrating better granularity. We release CR-LLM and code at https://github.com/Nianqi-Li/Concept-Reasoning-for-LLMs.
2023
pdf
abs
Prompts Can Play Lottery Tickets Well: Achieving Lifelong Information Extraction via Lottery Prompt Tuning
Zujie Liang
|
Feng Wei
|
Yin Jie
|
Yuxi Qian
|
Zhenghong Hao
|
Bing Han
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Thanks to the recent success of Pre-trained Language Models (PLMs), it has become a promising research direction to develop a universal model (UIE) that can solve all typical information extraction tasks within one generative framework. Nonetheless, in real-world scenarios of UIE applications, new data of different IE tasks and domains usually come in a stream over time. A desirable UIE system should be capable of continually learning new tasks without forgetting old ones, thereby allowing knowledge and functionalities expansion without re-training the whole system. In this paper, we study the UIE system under a more challenging yet practical scenario, i.e., “lifelong learning” settings, to evaluate its abilities in three aspects, including knowledge sharing and expansion, catastrophic forgetting prevention, and rapid generalization on few-shot and unseen tasks. To achieve these three goals, we present a novel parameter- and deployment-efficient prompt tuning method namely Lottery Prompt Tuning (LPT).LPT freezes the PLM’s parameters and sequentially learns compact pruned prompt vectors for each task leveraging a binary prompt mask, while keeping the prompt parameters selected by the previous tasks insusceptible. Furthermore, we use a simple yet effective method to perform mask selection and show the powerful transferability of Lottery Prompts to novel tasks. Extensive experiments demonstrate that LPT consistently sets state-of-the-art performance on multiple lifelong learning settings of UIE, including task-incremental setting on seen tasks, few-shot adaptation, and zero-shot generalization on novel tasks.
2022
pdf
abs
Lan-Bridge MT’s Participation in the WMT 2022 General Translation Shared Task
Bing Han
|
Yangjian Wu
|
Gang Hu
|
Qiulin Chen
Proceedings of the Seventh Conference on Machine Translation (WMT)
This paper describes Lan-Bridge Translation systems for the WMT 2022 General Translation shared task. We participate in 18 language directions: English to and from Czech, German, Ukrainian, Japanese, Russian, Chinese, English to Croatian, French to German, Yakut to and from Russian and Ukrainian to and from Czech.To develop systems covering all these direc_x0002_tions, we mainly focus on multilingual mod_x0002_els. In general, we apply data corpus filtering, scaling model size, sparse expert model (in par_x0002_ticular, Transformer with adapters), large scale backtranslation and language model rerankingtechniques. Our system ranks first in 6 directions based on automatic evaluation.