Benjamin Litterer


2023

pdf
Exploring Linguistic Style Matching in Online Communities: The Role of Social Context and Conversation Dynamics
Aparna Ananthasubramaniam | Hong Chen | Jason Yan | Kenan Alkiek | Jiaxin Pei | Agrima Seth | Lavinia Dunagan | Minje Choi | Benjamin Litterer | David Jurgens
Proceedings of the First Workshop on Social Influence in Conversations (SICon 2023)

Linguistic style matching (LSM) in conversations can be reflective of several aspects of social influence such as power or persuasion. However, how LSM relates to the outcomes of online communication on platforms such as Reddit is an unknown question. In this study, we analyze a large corpus of two-party conversation threads in Reddit where we identify all occurrences of LSM using two types of style: the use of function words and formality. Using this framework, we examine how levels of LSM differ in conversations depending on several social factors within Reddit: post and subreddit features, conversation depth, user tenure, and the controversiality of a comment. Finally, we measure the change of LSM following loss of status after community banning. Our findings reveal the interplay of LSM in Reddit conversations with several community metrics, suggesting the importance of understanding conversation engagement when understanding community dynamics.

pdf
When it Rains, it Pours: Modeling Media Storms and the News Ecosystem
Benjamin Litterer | David Jurgens | Dallas Card
Findings of the Association for Computational Linguistics: EMNLP 2023

Most events in the world receive at most brief coverage by the news media. Occasionally, however, an event will trigger a media storm, with voluminous and widespread coverage lasting for weeks instead of days. In this work, we develop and apply a pairwise article similarity model, allowing us to identify story clusters in corpora covering local and national online news, and thereby create a comprehensive corpus of media storms over a nearly two year period. Using this corpus, we investigate media storms at a new level of granularity, allowing us to validate claims about storm evolution and topical distribution, and provide empirical support for previously hypothesized patterns of influence of storms on media coverage and intermedia agenda setting.